Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(32): 11398-11405, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523487

RESUMO

The diffusive processes that occur in minerals involve chemical and physical surface phenomena of great interest that allow for understanding the mobility of different anions of environmental importance. One of them is glyphosate, which is widely used as a pesticide. In this work, we performed Hubbard-corrected density functional theory (DFT + U) calculations to study the adsorption and surface diffusion of methylphosphonic acid (MPA), as a model of glyphosate, on the (010) plane of goethite (GOT), one of the most important Fe(III) minerals in soils and sediments. In particular, the MPA adsorption was studied at the GOT-water interface, finding a strong covalent character in the bond. We also corroborated the occurrence of double proton transfer (MPA to GOT and GOT to GOT). Finally, activation energy barriers were calculated to estimate the half-lives for molecular diffusion, showing that MPA moves almost 3000 times slower than water at the GOT surface.

2.
Phys Chem Chem Phys ; 23(48): 27543-27551, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874379

RESUMO

Despite the great scientific effort, there are still some aspects of a polymeric membrane-based fuel cell (PEMFC) operation that are difficult to access experimentally. This is the case of the so-called triple-phase boundary (TPB), where the ionomer (commonly Nafion) interacts with the supported nanocatalyst (commonly Pt) and is key to the catalytic activity of the system. In this work, we use molecular dynamics simulations and electrochemical experiments on a Nafion/Pt/C system. We perform a systematic analysis, at an atomistic level, to evaluate the effect of several fundamental factors and their intercorrelation on the electrochemically active area (ECSA) of the catalysts. Our results reveal that at high Nafion contents, the catalyst utilization is affected due to the strong interaction between the sulfonic groups of the ionomer and the surface of the Pt nanoparticles (NPs). On the other hand, when the hydration level of the membrane decreases, the sulfonic groups have a greater occupation on the NP surface, covering the active area with hydrophobic Nafion chains and therefore increasing the inactive area. Voltammograms can corroborate our calculations. Overall, this investigation allows us to rationalize how the catalyst utilization is affected, which is an important step in establishing the relationship between the environment and the effectiveness and durability of the PEMFC system.

3.
Phys Chem Chem Phys ; 21(34): 18660-18666, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31414680

RESUMO

Magnesium is a promising material for automotive technology. Avoiding its spontaneous oxidation is, however, mandatory for a feasible industrial application of this metal. We perform computer simulations to demonstrate that a protective graphene layer can successfully avoid the oxidation of a magnesium material. This feature remains true even when the graphene layer has several simple defects, such as vacancies and Stone-Wales transformations. In fact, the defects actually increase the strength of the graphene/metal interaction, further enhancing the protective properties. These results are rationalized in terms of the low Mg cohesive energy, which allows the system to quickly reconstruct and adapt.

4.
Angew Chem Int Ed Engl ; 56(52): 16526-16530, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29065250

RESUMO

The van der Waals (vdW) interactions of n-alkanethiols (ATs) adsorbed on planar Au(111) and Au(100) surfaces and curved Au nanoparticles of different diameters are reported. By means of electrochemical measurements and molecular dynamic calculations, the increase in the average geometrical curvature of the surface influences the global interactions, that is, decreasing vdW interactions between neighboring molecules. Small NPs do not present the same electrochemical behavior as planar surfaces. The transition between nanoparticle to flat surface electrochemical response is estimated to occur at a circa 13-20 nm diameter range.

5.
Phys Chem Chem Phys ; 17(42): 28407, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26090937

RESUMO

Correction for 'Study of structures and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential' by Emanuele Panizon et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp00215j.

6.
Phys Chem Chem Phys ; 17(42): 28068-75, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25743271

RESUMO

Shape, stability and chemical ordering patterns of CuNi nanoalloys are studied as a function of size, composition and temperature. A new parametrization of an atomistic potential for CuNi is developed on the basis of ab initio calculations. The potential is validated against experimental bulk properties, and ab initio results for nanoalloys of sizes up to 147 atoms and for surface alloys. The potential is used to determine the chemical ordering patterns of nanoparticles with diameters of up to 3 nm and different structural motifs (decahedra, truncated octahedra and icosahedra), both in the ground state and in a wide range of temperatures. The results show that the two elements do not intermix in the ground state, but there is a disordering towards solid-solution patterns in the core starting from room temperature. This order-disorder transition presents different characteristics in the icosahedral, decahedral and fcc nanoalloys.

7.
Phys Chem Chem Phys ; 17(42): 28154-61, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25793457

RESUMO

The adsorption and the nucleation of different transition metals (Fe, Co, Ni, Cu, Pd, Ag, and Au) on alumina/Ni3Al(111) have been studied to shed light on the first stages of the synthesis of supported nanoparticles, focusing in particular on the possibility of producing ordered arrays. Affinity for oxygen, atomic radii, electronic properties and kinetics have been taken into account to rationalize the different behavior. In agreement with empirical findings, Pd is confirmed to be the best choice for a highly ordered nucleation following the "dot" superstructure of the alumina, due to a remarkable preference for the corresponding adsorption sites (holes) with respect to others, and for a rather strong binding. Atom by atom nucleation of this material has been studied, for seeds up to 6 atoms that offer a stiff anchoring of nanoparticles to the support.

8.
Phys Chem Chem Phys ; 16(42): 23134-42, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25251210

RESUMO

The mechanisms of seeding and nucleation of Cu nanoclusters onto an ultrathin alumina template supported on Ni3Al(111) has been investigated by means of ab initio calculations. Single Cu ad-atom diffusion on the oxide film is effective at room temperature, allowing preferential occupation of the defective sites of the so-called "dot" structure, where the adsorption is much stronger than in the "network" or any other surface site of the oxide. After the adsorption of the first Cu atom, further nucleation at the "dot" sites proceeds with the formation of multi-atomic seeds (with up to 6 atoms contained in the defect) that offer stiff anchoring for larger clusters. The whole process is thermodynamically favoured. We therefore clearly confirm and rationalize some experimental evidence showing that the ultrathin Al2O3/Ni3Al(111) is an efficient template for the growth of highly ordered arrays of small Cu nanoparticles.

9.
Phys Chem Chem Phys ; 16(34): 18098-104, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24875295

RESUMO

The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ∼4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach.


Assuntos
Ouro/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Nanocompostos/química , Nanocompostos/ultraestrutura , Simulação por Computador , Cristalização/métodos , Teste de Materiais , Modelos Moleculares , Tamanho da Partícula
10.
Phys Chem Chem Phys ; 15(5): 1526-31, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23238458

RESUMO

Accelerated molecular dynamics and quantum conductance calculations are employed to shed light onto the electrochemical properties of the Au|1,8-octanedithiol|Au junction. Widely different contact geometries with varying degrees of roughness are examined. Strikingly, the two extreme situations considered in this work, tip-tip and tip-perfect surface junctions, give almost indistinguishable conductances. This result contrasts the usual notion that different S-Au bonding geometries combined with molecular torsions provide the explanation for the experimentally observed sets (low, medium, high) of conductance peaks. In this work, we provide an alternative explanation for the occurrence of these sets in terms of the specific anchoring sites of the molecule to the tip, which in turn determines the interaction of a portion of the carbon chain with the tip.

11.
J Chem Theory Comput ; 8(11): 4539-45, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26605613

RESUMO

An accelerated dynamics scheme is employed to sample the configurational space of a system consisting of an alkanedithiol molecule confined to the gap between a metal tip and a perfect metal surface. With this information and by means of nonequilibrium green functions techniques (NEGF), conductance calculations are performed. The present results show that even for this system, which is one of the most simple conceivable because of the perfectness of the surface, a complex behavior appears due to the occurrence of an unexpected tip-molecule-surface arrangement, where the insertion of one of the molecular ends into the tip-surface gap generates configurations with strongly enhanced conductance. Estimates are also made for the time required to generate the molecular junction, indicating that it should depend on the tip-surface distance, thus opening the way to new experiments in this direction.

12.
Phys Chem Chem Phys ; 13(14): 6500-6, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21387045

RESUMO

A new semiempirical potential, based on density functional calculations and a bond-order Morse-like potential, is developed to simulate the adsorption behavior of thiolate molecules on non-planar gold surfaces, including relaxing effects, in a more realistic way. The potential functions include as variables the metal-molecule separation, vibrational frequencies, bending and torsion angles between several pairs of atom types and the coordination number of both the metal (Au) and thiolate groups. The potential was parameterized based on a set of density functional calculations of molecular adsorption in several surface sites (i.e. hollow, bridge, top, on-top Au adatom and the novel staple motif) for different crystalline facets, i.e. Au(111) and (100). Langevin dynamics simulations have been performed to study the capping effects of alkanethiolates molecules on Au nanoparticles in the range 1-4 nm. The simulation results reveal an enhancement of the coverage degree whilst the nanoparticles diameter decreases. A high surface disorder due to the strong S-Au bond was found, in very good agreement with very recent experimental findings [M. M. Mariscal, J. A. Olmos-Asar, C. Gutierrez-Wing, A. Mayoral and M. J. Yacaman, Phys. Chem. Chem. Phys., 2010, 12, 11785].


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Compostos de Sulfidrila/química , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA