RESUMO
mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.
Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Citocinas , Imunidade Inata , SARS-CoV-2 , Vacinação , Humanos , Imunidade Inata/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Adulto , Masculino , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Feminino , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinação/métodos , Citocinas/imunologia , Vacinas de mRNA/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/imunologia , Adulto Jovem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagemRESUMO
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
RESUMO
Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.
RESUMO
Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.
Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Raiva/prevenção & controle , Vacina Antirrábica/genética , Anticorpos Amplamente Neutralizantes , RNA Mensageiro , Anticorpos Antivirais , Vírus da Raiva/genética , GlicoproteínasRESUMO
Targeting CD40 by agonistic antibodies used as vaccine adjuvants or for cancer immunotherapy is a strategy to stimulate immune responses. The majority of studied agonistic anti-human CD40 antibodies require crosslinking of their Fc region to inhibitory FcγRIIb to induce immune stimulation although this has been associated with toxicity in previous studies. Here we introduce an agonistic anti-human CD40 monoclonal IgG1 antibody (MAB273) unique in its specificity to the CD40L binding site of CD40 but devoid of Fcγ-receptor binding. We demonstrate rapid binding of MAB273 to B cells and dendritic cells resulting in activation in vitro on human cells and in vivo in rhesus macaques. Dissemination of fluorescently labeled MAB273 after subcutaneous administration was found predominantly at the site of injection and specific draining lymph nodes. Phenotypic cell differentiation and upregulation of genes associated with immune activation were found in the targeted tissues. Antigen-specific T cell responses were enhanced by MAB273 when given in a prime-boost regimen and for boosting low preexisting responses. MAB273 may therefore be a promising immunostimulatory adjuvant that warrants future testing for therapeutic and prophylactic vaccination strategies.
Assuntos
Antineoplásicos , Receptores de IgG , Animais , Receptores de IgG/genética , Macaca mulatta/metabolismo , Antígenos CD40 , Ligante de CD40 , Imunoglobulina GRESUMO
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Assuntos
COVID-19 , Linfócitos T Auxiliares-Indutores , Humanos , Células T Auxiliares Foliculares , SARS-CoV-2 , PlasmócitosRESUMO
A third vaccine dose is often required to achieve potent, long-lasting immune responses. We investigated the effect of three 8-µg doses of CVnCoV, CureVac's severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate containing sequence-optimized unmodified mRNA encoding the spike (S) glycoprotein, administered at 0, 4, and 28 weeks, on immune responses in rhesus macaques. After the third dose, S-specific binding and neutralizing antibodies increased 50-fold compared with post-dose 2 levels, with increased responses also evident in the lower airways and against the SARS-CoV-2 B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) variants. Enhanced binding affinity of serum antibodies after the third dose correlated with higher somatic hypermutation in S-specific B cells, corresponding with improved binding properties of monoclonal antibodies expressed from isolated B cells. Administration of low-dose mRNA led to fewer cells expressing antigen in vivo at the injection site and in the draining lymph nodes compared with a 10-fold higher dose, possibly reducing engagement of precursor cells with the antigen and resulting in the suboptimal response observed after two-dose vaccination schedules in phase IIb/III clinical trials of CVnCoV. However, when immune memory is established, a third dose efficiently boosts the immunological responses and improves antibody affinity and breadth.
RESUMO
Adaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time. Furthermore, effective COVID-19 vaccines were developed in record time, and their rollout worldwide is already making a significant difference, although major challenges remain in terms of equal access. The pandemic has engaged scientists and the public alike, and terms such as seroprevalence, neutralizing antibodies, antibody escape and vaccine certificates have become familiar to a broad community. Here, we review key findings concerning B cell and antibody (Ab) responses to SARS-CoV-2, focusing on non-severe cases and anti-spike (S) Ab responses in particular, the latter being central to protective immunity induced by infection or vaccination. The emergence of viral variants that have acquired mutations in S acutely highlights the need for continued characterization of both emerging variants and Ab responses against these during the evolving pathogen-immune system arms race.
Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Imunidade , Pandemias/prevenção & controle , Anticorpos Neutralizantes , Teste Sorológico para COVID-19 , Humanos , Imunidade/imunologia , SARS-CoV-2 , Estudos Soroepidemiológicos , VacinaçãoRESUMO
Understanding the presence and durability of antibodies against SARS-CoV-2 in the airways is required to provide insights into the ability of individuals to neutralize the virus locally and prevent viral spread. Here, we longitudinally assessed both systemic and airway immune responses upon SARS-CoV-2 infection in a clinically well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity, from asymptomatic infection to fatal disease. In addition, we evaluated how SARS-CoV-2 vaccination influenced the antibody responses in a subset of these individuals during convalescence as compared with naive individuals. Not only systemic but also airway antibody responses correlated with the degree of COVID-19 disease severity. However, although systemic IgG levels were durable for up to 8 months, airway IgG and IgA declined significantly within 3 months. After vaccination, there was an increase in both systemic and airway antibodies, in particular IgG, often exceeding the levels found during acute disease. In contrast, naive individuals showed low airway antibodies after vaccination. In the former COVID-19 patients, airway antibody levels were significantly elevated after the boost vaccination, highlighting the importance of prime and boost vaccinations for previously infected individuals to obtain optimal mucosal protection.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19 , Imunização Secundária , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Pulmão/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Feminino , Seguimentos , Humanos , Imunidade Humoral/efeitos dos fármacos , Estudos Longitudinais , Masculino , Pessoa de Meia-IdadeRESUMO
Cell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs). Most APs rapidly exited the cell cycle, giving rise to non-GC-derived early memory B cells (eMBCs) that retained an AP-like transcriptional profile. Rapid decline of antigen availability controlled these events; provision of excess antigen precluded cell cycle exit and induced a new wave of PBs. Fate mapping revealed a prominent contribution of eMBCs to the MBC pool. Quiescent cells with an MBC phenotype dominated the early response to immunization in primates. A reservoir of APs/eMBCs may enable rapid readjustment of the immune response when failure to contain a threat is manifested by increased antigen availability.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Animais , Apresentação de Antígeno/imunologia , Diferenciação Celular/imunologia , Camundongos , Plasmócitos/imunologia , Células Precursoras de Linfócitos B/imunologiaRESUMO
A single dose of the replication-competent, live-attenuated yellow fever virus (YFV) 17D vaccine provides lifelong immunity against human YFV infection. The magnitude, kinetics, and specificity of B cell responses to YFV 17D are relatively less understood than T cell responses. In this clinical study, we focused on early immune events critical for the development of humoral immunity to YFV 17D vaccination in 24 study subjects. More specifically, we studied the dynamics of several immune cell populations over time and the development of neutralizing Abs. At 7 d following vaccination, YFV RNA in serum as well as several antiviral proteins were detected as a sign of YFV 17D replication. Activation of Th1-polarized circulating T follicular helper cells followed germinal center activity, the latter assessed by the surrogate marker CXCL13 in serum. This coincided with a plasmablast expansion peaking at day 14 before returning to baseline levels at day 28. FluoroSpot-based analysis confirmed that plasmablasts were specific to the YFV-E protein. The frequencies of plasmablasts correlated with the magnitude of neutralizing Ab titers measured at day 90, suggesting that this transient B cell subset could be used as an early marker of induction of protective immunity. Additionally, YFV-specific memory B cells were readily detectable at 28 and 90 d following vaccination, and all study subjects tested developed protective neutralizing Ab titers. Taken together, these studies provide insights into key immune events leading to human B cell immunity following vaccination with the YFV 17D vaccine.
Assuntos
Anticorpos Neutralizantes/imunologia , Células T Auxiliares Foliculares/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/imunologia , Citocinas/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Cinética , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Vacinas Atenuadas/imunologia , Adulto JovemRESUMO
Whole-blood fixation provides a rapid and simplified method for cell preservation compared to isolation of peripheral blood mononuclear cells (PBMCs). This can be especially important for sample acquisition and storage in resource-limited settings. However, some caveats have been reported, such as reduced cell marker recognition. Here, we evaluated the whole-blood proteomic stabilizer PROT1 and compared recognition of 53 common cell markers in fixed buffy coats and cryopreserved PBMCs isolated from the same donor. Several antibodies completely lost their binding to the cells, while others presented with partial loss of marker recognition or no effect at all. Based on the screened antibodies, we designed two antibody panels allowing phenotyping of B cells, monocytes, and dendritic cells and also T cells and NK cells in both fixed and non-fixed material. Taken together, our observations suggest that antibodies intended to be used with fixed blood first need to be evaluated for marker recognition and staining intensity, in comparison with fresh samples or cryopreserved PBMCs.
Assuntos
Anticorpos/imunologia , Preservação de Sangue , Leucócitos Mononucleares/imunologia , Anticorpos/sangue , Biomarcadores/sangue , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologiaRESUMO
Although intramuscular (i.m.) administration is the most commonly used route for licensed vaccines, subcutaneous (s.c.) delivery is being explored for several new vaccines under development. Here, we use rhesus macaques, physiologically relevant to humans, to identify the anatomical compartments and early immune processes engaged in the response to immunization via the two routes. Administration of fluorescently labeled HIV-1 envelope glycoprotein trimers displayed on liposomes enables visualization of targeted cells and tissues. Both s.c. and i.m. routes induce efficient immune cell infiltration, activation, and antigen uptake, functions that are tightly restricted to the skin and muscle, respectively. Antigen is also transported to different lymph nodes depending on route. However, these early differences do not translate into significant differences in the magnitude or quality of antigen-specific cellular and humoral responses over time. Thus, although some distinct immunological differences are noted, the choice of route may instead be motivated by clinical practicality.
Assuntos
Imunidade Adaptativa , Antígenos/imunologia , Imunidade Inata , Vacinas/administração & dosagem , Vacinas/imunologia , Animais , Linfócitos B/imunologia , Vias de Administração de Medicamentos , Feminino , HIV-1/imunologia , Humanos , Imunização , Injeções , Linfonodos/imunologia , Macaca mulatta , Masculino , Músculos , Pele , Linfócitos T/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
BACKGROUNDThe live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.METHODSWe performed multiple assays to dissect the immune responses induced in humans (n = 12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n = 12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, potentially novel immunogenic B. pertussis antigens were identified.RESULTSAll BPZE1 vaccinees showed robust B. pertussis-specific antibody responses with regard to significant increase in 1 or more of the following parameters: IgG, IgA, and memory B cells to B. pertussis antigens. BPZE1-specific T cells showed a Th1 phenotype, and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccines showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared with the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated ROS production in neutrophils and enhanced bactericidal function, which was in line with the finding that antibodies against adenylate cyclase toxin were only elicited by BPZE1.CONCLUSIONThe breadth of the antibodies, the Th1-type cellular response, and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission.TRIAL REGISTRATIONClinicalTrials.gov NCT02453048, NCT00870350.FUNDINGILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-Lung Foundation.
Assuntos
Anticorpos Antibacterianos/imunologia , Formação de Anticorpos , Bordetella pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Adolescente , Adulto , Linfócitos B/imunologia , Feminino , Humanos , Imunoglobulina G , Masculino , Vacina contra Coqueluche/imunologia , Células Th1/imunologia , Células Th2/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologiaRESUMO
Germinal centers (GCs) are structures formed within B cell follicles critical for the generation of high affinity antibodies. The evaluation of GCs in secondary lymphoid tissues has emerged as a valuable means for understanding the immunological activity in vaccine responses, autoimmunity and cancer. The analysis has been facilitated by advances in sampling techniques, including non-invasive lymph node collection and fine needle aspiration. In this study, we performed a systematic comparison between immunohistology and flow cytometry for analysis of GCs with the major aim to identify strategies for data analysis that would allow to relate data acquired by the two methods. Lymph nodes from rhesus macaques were divided in half and analysed as either cryosections or cell suspensions. Using human markers such as PD-1 and Ki67 to identify T follicular helper (TFH) cells and GC B cells, we developed a method for GC analysis by immunohistology using CellProfiler™ software and a flow cytometry panel with relatively limited numbers of antibodies to be scalable and feasible for most laboratories to perform. While some discrepancies between the two methods were identified, TFH cells and GC B cells normalized by total CD3+ T cell or CD20+ B cell numbers, respectively, in immunohistology correlated well with matched data from flow cytometry. GC area normalized by section area in immunohistology also correlated well with TFH cells per total live cells from flow cytometry. Performing this type of data analysis would therefore facilitate comparison of results generated between the two methods.
Assuntos
Citometria de Fluxo/métodos , Centro Germinativo/imunologia , Animais , Complexo CD3/análise , Contagem de Células , Antígeno Ki-67/análise , Linfonodos/imunologia , Macaca mulatta , Receptor de Morte Celular Programada 1/análise , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
[This corrects the article DOI: 10.3389/fimmu.2017.01539.].
RESUMO
Respiratory syncytial virus (RSV) is a worldwide public health concern for which no vaccine is available. Elucidation of the prefusion structure of the RSV F glycoprotein and its identification as the main target of neutralizing antibodies have provided new opportunities for development of an effective vaccine. Here, we describe the structure-based design of a self-assembling protein nanoparticle presenting a prefusion-stabilized variant of the F glycoprotein trimer (DS-Cav1) in a repetitive array on the nanoparticle exterior. The two-component nature of the nanoparticle scaffold enabled the production of highly ordered, monodisperse immunogens that display DS-Cav1 at controllable density. In mice and nonhuman primates, the full-valency nanoparticle immunogen displaying 20 DS-Cav1 trimers induced neutralizing antibody responses â¼10-fold higher than trimeric DS-Cav1. These results motivate continued development of this promising nanoparticle RSV vaccine candidate and establish computationally designed two-component nanoparticles as a robust and customizable platform for structure-based vaccine design.
Assuntos
Anticorpos Neutralizantes/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinação/métodos , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Caveolina 1 , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Cultura Primária de Células , Vírus Sinciciais Respiratórios/patogenicidade , Vacinas/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/fisiologiaRESUMO
Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.