Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
JACS Au ; 4(5): 1854-1862, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818074

RESUMO

Multistep synthesis performed on solid support is a powerful means to generate small-molecule libraries for the discovery of chemical probes to dissect biological mechanisms as well as for drug discovery. Therefore, expansion of the collection of robust chemical transformations amenable to solid-phase synthesis is desirable for achieving chemically diverse libraries for biological testing. Here, we show that sulfur(VI) fluoride exchange (SuFEx) chemistry, exemplified by pairing phenols with aryl fluorosulfates, can be used for the solid-phase synthesis of biologically active compounds. As a case study, we designed and synthesized a library of 84 hydroxamic acid-containing small molecules, providing a rich source of inhibitors with diverse selectivity profiles across the human histone deacetylase enzyme family. Among other discoveries, we identified a scaffold that furnished inhibitors of HDAC11 with exquisite selectivity in vitro and a selective inhibitor of HDAC6 that was shown to affect the acetylation of α-tubulin over histone sites H3K18, H3K27, as well as SMC3 in cultured cells. Our results encourage the further use of SuFEx chemistry for the synthesis of diverse small-molecule libraries and provide insight for future design of selective HDAC inhibitors.

3.
ACS Chem Neurosci ; 15(11): 2099-2111, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747979

RESUMO

Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.


Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas tau/metabolismo , Histona Desacetilases/metabolismo , Fosforilação/efeitos dos fármacos , Acetilação , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/antagonistas & inibidores
4.
Chemistry ; 30(9): e202303770, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088462

RESUMO

Thioamides are naturally occurring isosteres of amide bonds in which the chalcogen atom of the carbonyl is changed from oxygen to sulfur. This substitution gives rise to altered nucleophilicity and hydrogen bonding properties with importance for both chemical reactivity and non-covalent interactions. As such, thioamides have been introduced into biologically active compounds to achieve improved target affinity and/or stability towards hydrolytic enzymes but have also been applied as probes of protein and peptide folding and dynamics. Recently, a series of new methods have been developed for the synthesis of thioamides as well as their utilization in peptide chemistry. Further, novel strategies for the incorporation of thioamides into proteins have been developed, enabling both structural and functional studies to be performed. In this Review, we highlight the recent developments in the preparation of thioamides and their applications for peptide modification and study of protein function.


Assuntos
Peptídeos , Tioamidas , Tioamidas/química , Peptídeos/química , Proteínas/química , Amidas , Enxofre
5.
Angew Chem Int Ed Engl ; 62(49): e202314597, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873919

RESUMO

The sirtuins are NAD+ -dependent lysine deacylases, comprising seven isoforms (SIRT1-7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.


Assuntos
Sirtuína 1 , Sirtuínas , Humanos , Sirtuína 1/metabolismo , Sirtuínas/química , Acetilação , Hidrólise , Isoformas de Proteínas/metabolismo
6.
JACS Au ; 3(5): 1443-1451, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234128

RESUMO

Thioesters are considered to be "energy-rich" functional groups that are susceptible to attack by thiolate and amine nucleophiles while remaining hydrolytically stable at neutral pH, which enables thioester chemistry to take place in an aqueous medium. Thus, the inherent reactivity of thioesters enables their fundamental roles in biology and unique applications in chemical synthesis. Here, we investigate the reactivity of thioesters that mimic acyl-coenzyme A (CoA) species and S-acylcysteine modifications as well as aryl thioesters applied in chemical protein synthesis by native chemical ligation (NCL). We developed a fluorogenic assay format for the direct and continuous investigation of the rate of reaction between thioesters and nucleophiles (hydroxide, thiolate, and amines) under various conditions and were able to recapitulate previously reported reactivity of thioesters. Further, chromatography-based analyses of acetyl- and succinyl-CoA mimics revealed striking differences in their ability to acylate lysine side chains, providing insight into nonenzymatic protein acylation. Finally, we investigated key aspects of native chemical ligation reaction conditions. Our data revealed a profound effect of the tris-(2-carboxyethyl)phosphine (TCEP) commonly used in systems where thiol-thioester exchange occurs, including a potentially harmful hydrolysis side reaction. These data provide insight into the potential optimization of native chemical ligation chemistry.

7.
Angew Chem Int Ed Engl ; 61(47): e202204565, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130196

RESUMO

The sirtuin enzymes are a family of lysine deacylases that regulate gene transcription and metabolism. Sirtuin 5 (SIRT5) hydrolyzes malonyl, succinyl, and glutaryl ϵ-N-carboxyacyllysine posttranslational modifications and has recently emerged as a vulnerability in certain cancers. However, chemical probes to illuminate its potential as a pharmacological target have been lacking. Here we report the harnessing of aryl fluorosulfate-based electrophiles as an avenue to furnish covalent inhibitors that target SIRT5. Alkyne-tagged affinity-labeling agents recognize and capture overexpressed SIRT5 in cultured HEK293T cells and can label SIRT5 in the hearts of mice upon intravenous injection of the compound. This work demonstrates the utility of aryl fluorosulfate electrophiles for targeting of SIRT5 and suggests this as a means for the development of potential covalent drug candidates. It is our hope that these results will serve as inspiration for future studies investigating SIRT5 and general sirtuin biology in the mitochondria.


Assuntos
Neoplasias , Sirtuínas , Humanos , Animais , Camundongos , Lisina , Células HEK293 , Sirtuínas/química , Neoplasias/genética
8.
Acc Chem Res ; 55(10): 1456-1466, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35500056

RESUMO

The sophistication of proteomic analysis has revealed that protein lysine residues are posttranslationally modified by a variety of acyl groups. Protein lysine acetylation regulates metabolism, gene expression, and microtubule formation and has been extensively studied; however, the understanding of the biological significance of other acyl posttranslational modifications (PTMs) is still in its infancy. The acylation of lysine residues is mediated either by acyltransferase "writer" enzymes or by nonenzymatic mechanisms and hydrolase enzymes, termed "erasers", that cleave various acyl PTMs to reverse the modified state. We have studied the human lysine deacylase enzymes, comprising the 11 Zn2+-dependent histone deacetylases (HDACs) and the 7 NAD+-consuming sirtuins (SIRTs), over the past decade. We have thus developed selective inhibitors and molecular probes and have studied the acyl substrate scope of each enzyme using chemically synthesized peptide substrates and photo-cross-linking probes. Recently, we have turned our attention to PTMs containing a stereogenic center, such as ε-N-ß-hydroxybutyryllysine (Kbhb) and ε-N-lactyllysine (Kla), that each comprise a pair of mirror image stereoisomers as modifications. Both modifications are found on histones, where they affect gene transcription in response to specific metabolic states, and they are found on cytosolic and mitochondrial enzymes involved in fatty acid oxidation (Kbhb) and glycolysis (Kla), respectively. Thus, chiral modifications to lysine side chains give rise to two distinct diastereomeric products, with separate metabolic origins and potentially different activities exhibited by writer and eraser enzymes. Lysine l-lactylation originates from l-lactate, a major energy carrier produced from pyruvate after glycolysis, and it is highly induced by metabolic states such as the Warburg effect. l-Lactate can possibly be activated by acyl-coenzyme A (CoA) synthetases and transferred to lysine residues by histone acetyltransferases such as p300. d-Lactylation, on the other hand, arises primarily from a nonenzymatic reaction with d-lactylglutathione, an intermediate in the glyoxalase pathway. In addition to their distinct origin, we found that both K(l-la) and K(d-la) modifications are erased by HDACs with different catalytic efficiencies. Also, K(l-bhb) and K(d-bhb) arise from different metabolites but depend on interconnected metabolic pathways, and the two stereoisomers of ε-N-3-hydroxy-3-methylglutaryllysine (Khmg) originate from a single precursor that may then be regulated differently by eraser enzymes. Distinguishing between the individual stereoisomers of PTMs is therefore of crucial importance. In the present Account, we will (1) revisit the long-standing evidence for the distinct production and dynamics of enantiomeric forms of chiral metabolites that serve as ε-N-acyllysine PTMs and (2) highlight the outstanding questions that arise from the recent literature on chiral lysine PTMs resulting from these metabolites.


Assuntos
Lisina , Proteômica , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Lactatos , Lisina/química , Processamento de Proteína Pós-Traducional
9.
ACS Med Chem Lett ; 13(5): 779-785, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586419

RESUMO

Histone deacetylases (HDACs) 1-3 regulate chromatin structure and gene expression. These three enzymes are targets for cancer chemotherapy and have been studied for the treatment of immune disorders and neurodegeneration, but there is a lack of selective pharmacological tool compounds to unravel their individual roles. Potent inhibitors of HDACs 1-3 often display slow-binding kinetics, which causes a delay in inhibitor-enzyme equilibration and may affect assay readout. Here we compare the potencies and selectivities of slow-binding inhibitors measured by discontinuous and continuous assays. We find that entinostat, a clinical candidate, inhibits HDACs 1-3 by a two-step slow-binding mechanism with lower potencies than previously reported. In addition, we show that RGFP966, commercialized as an HDAC3-selective probe, is a slow-binding inhibitor with inhibitor constants of 57, 31, and 13 nM against HDACs 1-3, respectively. These data highlight the need for thorough kinetic investigation in the development of selective HDAC probes.

10.
Angew Chem Int Ed Engl ; 61(22): e202115805, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35299278

RESUMO

Sirtuin 5 (SIRT5) is a protein lysine deacylase enzyme that regulates diverse biology by hydrolyzing ϵ-N-carboxyacyllysine posttranslational modifications in the cell. Inhibition of SIRT5 has been linked to potential treatment of several cancers but potent compounds with activity in cells have been lacking. Here we developed mechanism-based inhibitors that incorporate isosteres of a carboxylic acid residue that is important for high-affinity binding to the enzyme active site. By masking of the tetrazole moiety of the most potent candidate from our initial SAR study, we achieved potent and cytoselective growth inhibition for the treatment of SIRT5-dependent leukemic cancer cell lines in culture. Thus, we provide an efficient, cellularly active small molecule that targets SIRT5, which can help elucidate its function and potential as a future drug target. This work shows that masked isosteres of carboxylic acids are viable chemical motifs for the development of inhibitors that target mitochondrial enzymes, which may have applications beyond the sirtuin field.


Assuntos
Pró-Fármacos , Sirtuínas , Ácidos Carboxílicos/farmacologia , Humanos , Lisina/química , Processamento de Proteína Pós-Traducional
11.
Sci Adv ; 8(3): eabi6696, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044827

RESUMO

Lysine L-lactylation [K(L-la)] is a newly discovered histone mark stimulated under conditions of high glycolysis, such as the Warburg effect. K(L-la) is associated with functions that are different from the widely studied histone acetylation. While K(L-la) can be introduced by the acetyltransferase p300, histone delactylases enzymes remained unknown. Here, we report the systematic evaluation of zinc- and nicotinamide adenine dinucleotide­dependent histone deacetylases (HDACs) for their ability to cleave ε-N-L-lactyllysine marks. Our screens identified HDAC1­3 and SIRT1­3 as delactylases in vitro. HDAC1­3 show robust activity toward not only K(L-la) but also K(D-la) and diverse short-chain acyl modifications. We further confirmed the de-L-lactylase activity of HDACs 1 and 3 in cells. Together, these data suggest that histone lactylation is installed and removed by regulatory enzymes as opposed to spontaneous chemical reactivity. Our results therefore represent an important step toward full characterization of this pathway's regulatory elements.


Assuntos
Histona Desacetilases , Histonas , Acetilação , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo
12.
Methods Mol Biol ; 2371: 101-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34596845

RESUMO

Cyclic peptides are becoming increasingly important in drug discovery due to their specific binding properties, larger surface area compared to small molecules, and their ready and modular synthetic accessibility. In this protocol, we describe an on-resin, cleavage-inducing cyclization methodology for the synthesis of cyclic thiodepsipeptides and cyclic homodetic peptides using the 3-amino-4-(methylamino)benzoic acid (MeDbz) linker. We further describe three post-cyclization one-pot procedures, which include desulfurization, disulfide bond formation, and S-alkylation of cysteine residues.


Assuntos
Peptídeos Cíclicos/química , Ácido Benzoico , Ciclização , Cisteína
13.
RSC Chem Biol ; 2(2): 612-626, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458803

RESUMO

Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. It affects diverse biological functions in the cell and has been considered a drug target in relation to both neurodegenerative diseases and cancer. Therefore, access to well-characterized and robust tool compounds is essential for the continued investigation of the complex functions of this enzyme. Here, we report a collection of chemical probes that are potent, selective, stable in serum, water-soluble, and inhibit SIRT2-mediated deacetylation and demyristoylation in cells. Compared to the current landscape of SIRT2 inhibitors, this is a unique ensemble of features built into a single compound. We expect the developed chemotypes to find broad application in the interrogation of SIRT2 functions in both healthy and diseased cells, and to provide a foundation for the development of future therapeutics.

14.
RSC Chem Biol ; 2(2): 627-635, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458804

RESUMO

Sirtuin 3 (SIRT3) is the major protein lysine deacetylase in the mitochondria. This hydrolase regulates a wide range of metabolically involved enzymes and has been considered as a potential drug target in certain cancers. Investigation of pharmacological intervention has been challenging due to a lack of potent and selective inhibitors of SIRT3. Here, we developed a strategy for selective inhibition of SIRT3 in cells, over its structurally similar isozymes that localize primarily to the nucleus (SIRT1) and the cytosol (SIRT2). This was achieved by directing the inhibitors to the mitochondria through incorporation of mitochondria-targeting peptide sequences into the inhibitor structures. Our inhibitors exhibited excellent mitochondrial localization in HeLa cells as indicated by fluorophore-conjugated versions, and target engagement was demonstrated by a cellular thermal shift assay of SIRT3 using western blotting. The acetylation state of documented SIRT3 target MnSOD was shown to be increased in cells with little effect on known targets of SIRT1 and SIRT2, showing that our lead compound exhibits selectivity for SIRT3 in cells. We expect that the developed inhibitor will now enable a more detailed investigation of SIRT3 as a potential drug target and help shed further light on the diverse biology regulated by this enzyme.

15.
J Am Chem Soc ; 143(28): 10514-10518, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228933

RESUMO

Group behavior in many bacteria relies on chemically induced communication called quorum sensing (QS), which plays important roles in the regulation of colonization, biofilm formation, and virulence. In Gram-positive bacteria, QS is often mediated by cyclic ribosomally synthesized and posttranslationally modified peptides (RiPPs). In staphylococci, for example, most of these so-called autoinducing peptides (AIPs) contain a conserved thiolactone functionality, which has also been predicted to constitute a structural feature of AIPs from other genera. Here, we show that pentameric AIPs from Lactiplantibacillus plantarum, Clostridium perfringens, and Listeria monocytogenes that were previously presumed to be thiolactone-containing structures readily rearrange to become homodetic cyclopeptides. This finding has implications for the developing understanding of cross-species and potential cross-genus communication of bacteria and may help guide the discovery of peptide ligands to perturb their function.


Assuntos
Depsipeptídeos/metabolismo , Bactérias Gram-Positivas/metabolismo , Compostos de Sulfidrila/metabolismo , Depsipeptídeos/química , Bactérias Gram-Positivas/química , Percepção de Quorum , Compostos de Sulfidrila/química
16.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34027418

RESUMO

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Sirtuínas , Apoptose , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/metabolismo , Mitocôndrias/genética , Fosforilação Oxidativa , Sirtuínas/genética
17.
STAR Protoc ; 2(1): 100313, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659897

RESUMO

Histone deacetylases (HDACs) are ubiquitous enzymes that cleave post-translational ε-N-acyllysine modifications. The continued identification of diverse acyl modifications at lysine residues in proteins has resulted in discovery of new insight into the biological roles of these enzymes. Here, we describe a fluorogenic high-throughput screening protocol to identify deacylase activities. We describe the careful optimization of continuous, coupled enzyme assays, which provide efficient determination of kinetic parameters. These techniques can facilitate inhibitor assay design and provide fundamental understanding of HDAC biochemistry. For complete details on the use and execution of this protocol, please refer to Moreno-Yruela et al. (2018).


Assuntos
Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Histona Desacetilases/química , Bioensaio/métodos , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Cinética , Lisina/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Especificidade por Substrato
18.
Trends Plant Sci ; 26(7): 741-757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33461867

RESUMO

Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.


Assuntos
Histona Desacetilases , Plantas , Animais , Histona Desacetilases/metabolismo , Histonas , Desenvolvimento Vegetal , Plantas/metabolismo , Zinco
19.
Nat Commun ; 12(1): 62, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397936

RESUMO

Histones control gene expression by regulating chromatin structure and function. The posttranslational modifications (PTMs) on the side chains of histones form the epigenetic landscape, which is tightly controlled by epigenetic modulator enzymes and further recognized by so-called reader domains. Histone microarrays have been widely applied to investigate histone-reader interactions, but not the transient interactions of Zn2+-dependent histone deacetylase (HDAC) eraser enzymes. Here, we synthesize hydroxamic acid-modified histone peptides and use them in femtomolar microarrays for the direct capture and detection of the four class I HDAC isozymes. Follow-up functional assays in solution provide insights into their suitability to discover HDAC substrates and inhibitors with nanomolar potency and activity in cellular assays. We conclude that similar hydroxamic acid-modified histone peptide microarrays and libraries could find broad application to identify class I HDAC isozyme-specific substrates and facilitate the development of isozyme-selective HDAC inhibitors and probes.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Células HEK293 , Histonas/metabolismo , Humanos , Isoenzimas/metabolismo , Análise em Microsséries , Peptídeos/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Zinco/metabolismo
20.
J Med Chem ; 63(22): 13709-13718, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33143415

RESUMO

Venomous snakebites cause >100 000 deaths every year, in many cases via potent depression of human neuromuscular signaling by snake α-neurotoxins. Emergency therapy still relies on antibody-based antivenom, hampered by poor access, frequent adverse reactions, and cumbersome production/purification. Combining high-throughput discovery and subsequent structure-function characterization, we present simple peptides that bind α-cobratoxin (α-Cbtx) and prevent its inhibition of nicotinic acetylcholine receptors (nAChRs) as a lead for the development of alternative antivenoms. Candidate peptides were identified by phage display and deep sequencing, and hits were characterized by electrophysiological recordings, leading to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs. We also solved the peptide:α-Cbtx cocrystal structure, revealing that the peptide, although of unique primary sequence, binds to α-Cbtx by mimicking structural features of the nAChR binding pocket. This demonstrates the potential of small peptides to neutralize lethal snake toxins in vitro, establishing a potential route to simple, synthetic, low-cost antivenoms.


Assuntos
Proteínas Neurotóxicas de Elapídeos/antagonistas & inibidores , Proteínas Neurotóxicas de Elapídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteínas Neurotóxicas de Elapídeos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Receptores Nicotínicos/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA