Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 89(3-4): 393-416, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029286

RESUMO

The wood warbler, Phylloscopus sibilatrix (Aves: Passeriformes), is a well-known model organism for studying bird migration, breeding habitat selection and nest predation. The nest acarofauna of this bird species has not been extensively studied so far. To provide a comprehensive report on mite species inhabiting wood warbler nests and to assess infestation parameters (prevalence, intensity, and abundance) for mite species and orders, we collected 45 nests of this bird species in the Wielkopolska National Park in western Poland. Analyses revealed a huge diversity (198 species) of mites inhabiting wood warbler nests. We found individuals belonging to the Mesostigmata, Trombidiformes and Sarcoptiformes. The Trombidiformes, represented in our study only by the Prostigmata, achieved statistically significantly lower intensity and abundance, compared to representatives of other orders. However, the number of recorded prostigmatid species was high (65). The most common were: Stigmaeus sphagneti (22 nests), Stigmaeus longipilis (16), Eupodes voxencollinus (15), Cunaxa setirostris (14), Stigmaeus pilatus (11), and Linopodes sp. 2 (10). The prevalence of Mesostigmata and Sarcoptiformes was equal, reaching 91.1%. Most of Gamasina (Mesostigmata) species found in this study were more characteristic of the soil environment and forest litter than bird nests, but there was also a typical bird parasite, viz. Ornithonyssus sylviarum. None of the observed species of Uropodina (Mesostigmata) or Oribatida (Sarcoptiformes) was typical for bird nests. Among the Uropodina, the highest parameters of nest infestation were achieved by Oodinychus ovalis, whereas among the Oribatida, they were achieved by Metabelba pulverosa. We discuss the importance of wood warbler nests for mite dispersal, survival and reproduction.


Assuntos
Ácaros , Passeriformes , Aves Canoras , Animais , Polônia , Parques Recreativos
2.
Infect Genet Evol ; 91: 104829, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794350

RESUMO

Data on the spread of intracellular bacteria in oribatid mites (Acari: Oribatida) are scarce. Our work fills a gap in the research on endosymbionts in this group of invertebrates and provides information on Wolbachia infection in Hypochthonius rufulus (Acari: Oribatida) from soil, litter and moss sample collected in south-eastern Poland. This is the first report of Wolbachia in H. rufulus. Phylogeny based on the analysis of the 16S rRNA, gatB, fbpA, gltA, ftsZ and hcpA gene sequences revealed that Wolbachia from H. rufulus represented supergroup E and was related to bacterial endosymbionts of Collembola. The unique sequence within Wolbachia supergroup E was detected for the 16S rRNA gene of the bacteria from H. rufulus. The sequences of Wolbachia 16S rRNA and housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies.


Assuntos
Ácaros/microbiologia , Wolbachia/isolamento & purificação , Animais , Filogenia , Polônia , Wolbachia/classificação , Wolbachia/genética
3.
Cladistics ; 36(5): 458-480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618974

RESUMO

Chaetonotidae is the most diverse and widely distributed family of the order Chaetonotida (Gastrotricha) and includes both marine and freshwater species. Although the family is regarded as a sister taxon to the exclusively marine Xenotrichulidae, the type of environment, marine or freshwater, where Chaetonotidae originated is still not known. Here, we reconstructed the phylogeny of the family based on molecular sequence data and mapped both morphological and ecological characters to determine the ancestral environment of the first members of the family. Our results revealed that the freshwater genus Bifidochaetus is the earliest branching lineage in the paraphyletic Chaetonotidae (encompassing Dasydytidae and Neogosseidae). Moreover, we reconstructed Lepidochaetus-Cephalionotus clade as a monophyletic sister group to the remaining chaetonotids, which supports Kisielewski's morphological based hypothesis concerning undifferentiated type of body scales as a most primary character in Chaetonotidae. We also found that reversals to marine habitats occurred independently in different Chaetonotidae lineages, thus marine species in the genera Heterolepidoderma, Halichaetonotus, Aspidiophorus and subgenera Chaetonotus (Schizochaetonotus) or Chaetonotus (Marinochaetus) should be assumed as having secondarily invaded the marine environment. Character mapping revealed a series of synapomorphies that define the clade that includes Chaetonotidae (with Dasydytidae and Neogosseidae), the most important of which may be those linked to reproduction.


Assuntos
Invertebrados/classificação , Invertebrados/genética , Escamas de Animais/anatomia & histologia , Animais , Ecossistema , Água Doce , Invertebrados/anatomia & histologia , Filogenia
4.
Curr Microbiol ; 76(9): 1038-1044, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31214820

RESUMO

We undertook the issue of the distribution of intracellular bacteria among Oribatida (Acari). Six genera of bacteria were detected by PCR and Sanger DNA sequencing: Wolbachia, Cardinium, Rickettsia, Spiroplasma, Arsenophonus, and Hamiltonella. Our research, for the first time, revealed the presence of Cardinium in Microzetorchestes emeryi in two subpopulations separated from each other by 300 m. The percentages of infected animals were the same in both subpopulations-ca. 20%. The identity of 16S rDNA sequences of Cardinium between these two subpopulations of M. emeryi was 97%. Phylogenetic analysis showed that the Cardinium in M. emeryi was clustered into the group A. The occurrence of M. emeryi in Poland has not been reported before and our report is the first one. Cardinium maybe help the thermophilic M. emeryi to adapt to low temperatures in the Central Europe.


Assuntos
Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Ácaros/microbiologia , Animais , Bacteroidetes/classificação , Bacteroidetes/fisiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácaros/fisiologia , Filogenia , Polônia , Simbiose
5.
Mol Phylogenet Evol ; 135: 230-235, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914397

RESUMO

Heritable endosymbionts have been observed in arthropod and nematode hosts. The most-known among them is Wolbachia. Although the bacterium was previously identified in oribatid mites (Acari: Oribatida), it was not assigned to any phylogenetic group. Endosymbionts have a profound influence on their hosts, playing various functions that affect invertebrate's biology such as changing the way of reproduction. Oribatida provide the very unique examples of groups in which even whole families appear to be thelytokous, so we considered that it is worth to investigate the occurrence of endosymbiotic microorganisms in oribatid mites, especially that the knowledge on the symbionts occurrence in this invertebrate group is negligible. We report for the first time Wolbachia in oribatid mite Gustavia microcephala. The sequences of 16S rDNA, gltA, and ftsZ genes of the endosymbiont from the mite showed the highest similarity to Wolbachia found in Collembola. Phylogenetic analysis based on single gene and concatenated alignments of three genes revealed that the bacteria from G. microcephala and Collembola were related and clustered together with supergroup E. Relatively close relationship of Wolbachia from oribatid and collembolan hosts might mean at the evolutionary scale that horizontal transfer of bacteria between these two groups of invertebrates may take place.


Assuntos
Ácaros/microbiologia , Filogenia , Wolbachia/classificação , Animais , Sequência de Bases , DNA Ribossômico/genética , Funções Verossimilhança , Wolbachia/genética
6.
Infect Genet Evol ; 70: 175-181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30708135

RESUMO

We determined the occurrence of intracellular endosymbionts (Wolbachia, Cardinium, Arsenophonus, Rickettsia, Spiroplasma, Hamiltonella, flavobacteria, and microsporidia) in oribatid mites (Acari: Oribatida) with the use of PCR technique. For the first time we looked for and detected Wolbachia in parthenogenetic oribatid mite Ceratozetes thienemanni Willmann, 1943. The 16S rDNA, gatB, hcpA, and gltA sequences of Wolbachia in C. thienemanni showed the highest similarity (≥ 90%) to the genes of Wolbachia from springtails (Collembola) and oribatid mite Gustavia microcephala. We found the unique sequence 5'-GGGGTAATGGCC-3' in 16S rDNA of Wolbachia from C. thienemanni and collembolan representing group E. The phylogeny of Wolbachia based on the analysis of single genes as well as concatenated alignments of four bacterial loci showed that the bacteria from C. thienemanni belonged to Wolbachia group E, like the endosymbionts from springtail hosts and G. microcephala. Considering coexisting of representatives of Oribatida and Collembola in the same soil habitat and similar food, it is possible that the source of Wolbachia infection was the same. Residues of dead invertebrates could be in organic matter of their soil food, so the scenario of infection transferred by eating of remains of soil cohabitates is also possible. It could explain the similarity and relationship of the Wolbachia in these two arthropod groups. Oribatid mite C. thienemanni is a parthenogenetic mite which is a unique feature in the genus Ceratozetes. Moreover, this species, within the entire genus Ceratozetes, is characterized by the most northerly distribution. It is difficult to determine either it is parthenogenesis or the presence of endosymbionts that are in some way responsible for this kind of evolutionary success. Maybe we are dealing here with a kind of synergy of both factors?


Assuntos
Simbiose/genética , Wolbachia/classificação , Animais , Proteínas de Bactérias/genética , DNA Ribossômico/genética , Interações entre Hospedeiro e Microrganismos , Ácaros/microbiologia , Filogenia , Wolbachia/genética
7.
Mol Phylogenet Evol ; 131: 64-71, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391314

RESUMO

The understanding of the biology of arthropods requires an understanding of their bacterial associates. We determined the distribution of bacteria Wolbachia sp., Rickettsia sp., Cardinium sp., Spiroplasma sp., Arsenophonus sp., Hamiltonella sp., and Flavobacterium in oribatid mites (Acari: Oribatida). We identified Cardinium sp. in Achipteria coleoptrata. This is the first report of this bacterium in A. coleoptrata. Approximately 30% of the mite population was infected by Cardinium sp. The Cardinium 16S rDNA was examined for the presence of two sequences unique for this microorganism. One of them was noted in Cardinium sp. of A. coleoptrata. In the second sequence, we found nucleotide substitution in the 7th position: A instead of T. In our opinion, this demonstrated the unique nature of Cardinium sp. of A. coleoptrata. We also determined phylogenetic relationship between Cardinium sp., including the strain found in A. coleoptrata by studying the 16S rRNA and gyrB gene sequences. It revealed that Cardinium from A. coleoptrata did not cluster together with strains from groups A, B, C or D, and constituted a separate clade E. These observations make A. coleoptrata a unique Cardinium host in terms of the distinction of the strain.


Assuntos
Bacteroidetes/fisiologia , Ácaros/microbiologia , Animais , Sequência de Bases , DNA Ribossômico/genética , Funções Verossimilhança , Filogenia , RNA Ribossômico 16S/genética
8.
Microbiology (Reading) ; 161(8): 1561-1571, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25991706

RESUMO

We determined the distribution of microbial endosymbionts as possible agents of parthenogenesis in Oribatida. We screened mites from 20 species of 14 families suspected to be parthenogenetic from the absence or rarity of males. Our research included parthenogenesis-inducing bacteria Wolbachia spp., Cardinium spp., Rickettsia spp., and additionally Arsenophonus, Spiroplasma and microsporidia that can also manipulate host reproduction. We detected the endosymbionts by PCR-based methods and transmission electron microscopy (TEM) observation of fixed and stained preparations of host cells. We detected Wolbachia only in one Oribatida species, Oppiella nova, by identifying Wolbachia genes using PCR. TEM observations confirmed infection by the endosymbiont in O. nova and its lack in other Oribatida species. Sequence analysis of hcpA and fbpA genes showed that the Wolbachia strain from O. nova was different from strains characterized in some insects, crustaceans (Isopoda), mites (Tetranychidae), springtails (Hexapoda) and roundworms (Nematoda). The analysis strongly suggested that the Wolbachia sp. strain found in O. nova did not belong to supergroups A, B, C, D, E, F, H or M. We found that the sequences of Wolbachia from O. nova were clearly distantly related to sequences from the bacteria of the other supergroups. This observation makes O. nova a unique Wolbachia host in terms of the distinction of the strain. The role of these micro-organisms in O. nova remains unknown and is an issue to investigate.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Ácaros/microbiologia , Simbiose , Animais , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Especificidade de Hospedeiro , Masculino , Ácaros/classificação , Ácaros/fisiologia , Filogenia , Especificidade da Espécie , Wolbachia/classificação , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/fisiologia
9.
Mol Phylogenet Evol ; 56(1): 222-41, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20060051

RESUMO

Acariformes (one of the two main lineages of Acari) represent an exceptionally diverse group of Arachnida. We performed first comprehensive phylogenetic analysis of Acariformes using sequence data from the nuclear small subunit rRNA gene (18S rDNA) and the mitochondrial cytochrome c oxidase subunit I (COI, amino acids). Our analyses confirm the monophyly of Acariformes and recognize two orders within Acariformes: Sarcoptiformes, consisting of Endeostigmata and Oribatida+Astigmata, and Trombidiformes. The data revealed the origin of Astigmata within Oribatida with the desmonomatan superfamily Crotonioidea as the source of astigmatan radiation and the sexual family Hermanniidae as the sister group, which generally supports previous morphological hypotheses. These results were found despite the strong conflict between long-branch attraction (LBA) artifacts and phylogenetic signal. It is likely that the conflict resulted from differences in the substitution rates among acariform lineages, especially comparing slowly evolving Oribatida with rapidly evolving Astigmata. The use of likelihood methods considered more resistant to LBA only slightly decreased the chance of falling into the LBA trap; the probability of recovering the origin of Astigmata within Desmonomata differs only by about 10% from that of having the long branched Astigmata and Trombidiformes either connected directly or shifted to deep parts of the tree due to outgroup attraction. Molecular dating using the rate-smoothing method PATHd8 shows that Acariformes originated c. 435 MYA and were probably among the earliest arthropods invading terrestrial habitats in late Silurian or the Lower Devonian, when the first vascular plants are thought to have arisen. Our analyses did not support the monophyly of Acari because we recovered clades Acariformes-Solifugae and Parasitiformes-Pseudoscorpionida. However, a formal revision of arachnid classification that would reflect these results must await future analyses.


Assuntos
Evolução Molecular , Ácaros/classificação , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Fósseis , Funções Verossimilhança , Ácaros/genética , Modelos Genéticos , RNA Ribossômico 18S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA