Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202401415, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305106

RESUMO

Hydrogen has been recognized as a green energy carrier, which can relieve energy shortage and environmental pollution. Currently, alkaline water electrolysis (AWE) driven by renewable energy to produce large-scale green hydrogen is a mainstream technology. However, tardy cathodic hydrogen evolution reaction (HER) and stability issue of catalysts make it challenging to meet the industrial requirements. Ni-based materials have attracted wide attention, thanks to their low cost and rich tuning possibilities, and many efforts have focused on their activity and stability. However, due to the significant discrepancy between laboratory and industrial conditions, these catalysts have not been widely deployed in industrial AWE. In this review, we first introduce the differences between laboratory and industrial stage, especially concerning equipment, protocols and evaluation metrics. To shorten these gaps, some strategies are proposed to improve the activity and stability of the Ni-based catalysts. Besides, some key issues related to the catalysts in industrial AWE device are also emphasized, including reverse-current and foreign ions in the electrolyte. Finally, the challenges and outlooks on the industrial alkaline AWE are discussed.

2.
Angew Chem Int Ed Engl ; 57(45): 14769-14772, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30204938

RESUMO

Protonated pyridine (PyH+ ) has been reported to act as a peculiar and promising catalyst for the direct electroreduction of CO2 to methanol and/or formate. Because of recent strong incentives to turn CO2 into valuable products, this claim triggered great interest, prompting many experiments and DFT simulations. However, when performing the electrolysis in near-neutral pH electrolyte, the local pH around the platinum electrode can easily increase, leading to Py and HCO3 - being the predominant species next to the Pt electrode instead of PyH+ and CO2 . Using a carefully designed electrolysis setup which overcomes the local pH shift issue, we demonstrate that protonated pyridine undergoes a complete hydrogenation into piperidine upon mild reductive conditions (near 0 V vs. RHE). The reduction of the PyH+ ring occurs with and without the presence of CO2 in the electrolyte, and no sign of CO2 electroreduction products was observed, strongly questioning that PyH+ acts as a catalyst for CO2 electroreduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA