Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 322: 117623, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38128890

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cajanus cajan (L) Millsp (Fabaceae) seed decoction is used by traditional healers in Nigeria as nerve tonic, hence, could be beneficial in the treatment of Parkinson's disease (PD), a progressive and debilitating neurodegenerative disease that imposes great burden on the healthcare system globally. AIM OF THE STUDY: This study aimed at investigating the neuroprotective effect of ethanol seed extract of Cajanus cajan (CC) in the treatment of rotenone-induced motor symptoms and non-motor symptoms associated with PD. MATERIALS AND METHODS: To assess the protective action of CC on rotenone-induced motor- and non-motor symptoms of PD, mice were first pretreated with CC (50, 100 or 200 mg/kg, p.o.) an hour before oral administration of rotenone (1 mg/kg, p.o, 0.5% in carboxyl-methylcellulose) for 28 consecutive days and weekly behavioural tests including motor assessment (open field test (OFT), rotarod, pole and cylinder tests) and non-motor assessment (novel object recognition (NOR), Y-maze test (YM), forced swim and tail suspension, gastric emptying and intestinal fluid accumulation tests) were carried out. The animals were euthanized on day 28 followed by the collection of brain for assessment of oxidative stress, inflammatory markers and immunohistochemical analysis of the striatum (STR) and substantia nigra (SN). Phytochemicals earlier isolated from CC were docked with protein targets linked with PD pathology such as; catechol-O-methyltransferase (COMT), tyrosine hydroxylase (TH) and Leucine rich receptor kinase (LRRK). RESULTS: this study showed that CC significantly reduced rotenone-induced spontaneous motor impairment in OFT, pole, cylinder and rotarod tests in mice as well as significant improvement in non-motor features (significant reversal of rotenone-induced deficits discrimination index and spontaneous alternation behaviour in NORT and YM test, respectively, reduction in immobility time in forced swim/tail suspension test, gastrointestinal disturbance in intestinal transit time in mice. Moreso, rotenone-induced neurodegeneration, oxidative stress and neuroinflammation were significantly attenuated by CC administration. In addition, docking analysis showed significant binding affinity of CC phytochemicals with COMT, TH and LRRK2 receptors. CONCLUSION: Cajanus cajan seeds extract prevented both motor and non-motor features of Parkinson disease in mice through its antioxidant and anti-inflammatory effects. Hence, could be a potential phytotherapeutic adjunct in the management of Parkinson disease.


Assuntos
Cajanus , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Rotenona/toxicidade , Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/uso terapêutico , Neuroproteção , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Modelos Animais de Doenças
2.
J Ethnopharmacol ; 306: 116142, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638856

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Cajanus cajan (L) Millsp, are used in Traditional medicine for the treatment of anxiety and other neurological disorders. Hence, this study is designed to investigate the antidepressant- and anxiolytic-like properties of ethanol seed extract of Cajanus cajan (CC) in mice. MATERIALS AND METHODS: CC (50, 100 or 200 mg/kg, p.o.) was administered 1h before subjecting the animals to different behavioral models: forced swim test (FST) and tail suspension test (TST) (depressive-like behaviour), open field test (OFT), elevated plus maze (EPM), light-dark test (LDT) and hole-board test (HBT) for anxiety-like behaviour. To ascertain the pharmacodynamic of CC mice were pretreated with monoaminergic, nitrergic and GABAergic receptors antagonists. As well as molecular docking analysis of about 19 flavonoids present in CC on GABAA, α2 adrenoceptors and 5-HT2A receptors. RESULTS: CC (50, 100 or 200 mg/kg, p.o.) treatment significantly reduced immobile time in both FST and TST when compared with vehicle-treated control. However, the pretreatment of mice with prazosin/yohimbine (α1/2 adrenoceptor antagonists, respectively), WAY100635 (5-HT1A receptor antagonist), ketanserin (5-HT2A receptor antagonist), sulpiride (dopamine D2 receptor antagonist), L-NG-Nitro arginine methyl ester (L-NAME), or methylene blue reversed the antidepressant-like effect of CC. In anxiety model, CC produced significant (p < 0.05) increase in open arms exploration and head dipping behavior which was reversed by flumazenil (benzodiazepine receptor antagonist) in the EPM. Docking analysis showed significant binding affinity of orientin, vitexin, pinostrobin and quercetin with 5HT2A, α2-adrenoceptor and GABAA receptors. CONCLUSION: Findings from this study showed that C.cajan seeds extract exerts antidepressant-like effect through participation of monoaminergic systems (5-HT2 receptor, α1/α2-adrenoceptors, and dopamine D2-receptors), nitric oxide-cyclic GMP pathway and anxiolytic-like effect via GABAA benzodiazepine receptors. Moreso, presence of flavonoids with significant binding energies with monoaminergic and GABAergic systems support the potential of the extract in the management of mixed anxiety-depressive illness.


Assuntos
Ansiolíticos , Animais , Camundongos , Ansiolíticos/farmacologia , Óxido Nítrico , Dopamina , Simulação de Acoplamento Molecular , Serotonina , Antidepressivos/farmacologia , Extratos Vegetais/farmacologia , Receptores de Serotonina , Ácido gama-Aminobutírico/farmacologia , Flavonoides/farmacologia , Receptores Adrenérgicos , Depressão/tratamento farmacológico , Comportamento Animal , Elevação dos Membros Posteriores
3.
Neurotox Res ; 41(3): 212-223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36705862

RESUMO

It is well established that there is a link between type 2 diabetes mellitus and Parkinson's disease (PD) evidenced in faster progression and more severe phenotype in patients living with diabetes suggestive of shared cellular pathways; hence, antidiabetic drugs could be a possible treatment options for disease modification. This study evaluated the effect of glimepiride (GMP), a third generation sulphonylurea, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Sixty mice were divided randomly into six individual groups of 10 mice each and dose orally as follows: group 1: vehicle (10 ml/kg, p.o.); group 2: MPTP (20 mg/kg, i.p. × 4 at 2-h interval); groups 3-5: GMP (1, 2, or 4 mg/kg, p.o.) + MPTP (20 mg/kg, i.p. × 4 at 2-h interval); and group 6: GMP (4 mg/kg, p.o.). Effect of glimepiride on motor activities were appraised with the use of open-field test and rotarod performance while non-motor activity was evaluated using force swim test (FST; depression) and Y-maze test (working memory). MPTP induced significant decrease in latency to fall on rotarod, distance covered/rearing in open field, mean speed and climbing in FST, and percentage alternation behavior in Y-maze suggestive of motor and non-motor dysfunction. However, MPTP-induced motor and non-motor dysfunction were ameliorated with glimepiride post-treatment. In addition, MPTP-induced increase in oxidative stress parameters and cholinergic neurotransmission was attenuated by glimepiride. In addition, MPTP-induced nigral dopamine neuron loss (decrease in tyrosine hydroxylase-positive neuron (TH)) and neuroinflammation (activation of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (iba-1)) were ameliorated by GMP administration. This study showed that glimepiride ameliorates MPTP-induced PD motor and non-motor deficits through enhancement of antioxidant defense signaling and attenuation of neuroinflammatory markers. Thus, this could be useful as a disease-modifying therapy in the management of PD.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos , Diabetes Mellitus Tipo 2/metabolismo , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Estresse Oxidativo , Neuroglia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
J Food Biochem ; 46(10): e14342, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35851712

RESUMO

The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. This study is aimed at evaluating the effects of Clerodendrum polycephalum (CP) leaf extract on chemical-induced seizures in mice and the possible mechanisms of action. Swiss albino mice were pretreated with CP (50, 100, or 500 mg/kg, p.o.) prior to intraperitoneal injection of picrotoxin (PTX) or pentylenetetrazole (PTZ). However, the most effective dose was used to elucidate the role of GABAergic and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling mechanisms in mice brains. Accordingly, we evaluated the preventive and reversal effects of CP on kainic acid (KA)-induced temporal lobe epilepsy (TLE), oxidative stress, and neuroinflammatory in mice. The pretreatment of mice with CP delayed the latencies to PTX and PTZ-induced seizures and decrement in the period of tonic-clonic attacks. Interestingly, CP (100 mg/kg) completely prevented PTZ-induced tonic-clonic seizures. Contrastingly, flumazenil (benzodiazepine receptor antagonist), NG -nitro-L-Arginine (L-NNA) (10 mg/kg., neuronal nitric oxide synthase inhibitor), and methylene blue (MB) (2 mg/kg, a soluble guanylyl cyclase inhibitor) but not L-arginine (150 mg/kg., nitric oxide precursor) reversed CP-induced anticonvulsant-like effect in PTZ model. Furthermore, KA-elicited TLE was prevented by CP treatment. CP also attenuated KA-induced oxidative stress, cyooxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) elevated expressions in the hippocampus. The study revealed that the ethanolic leaf extract of CP produced anticonvulsant actions through enhancement of antioxidant defense, GABAergic, and NO-cGMP signaling pathways as well as attenuation of inflammatory processes. PRACTICAL APPLICATIONS: The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. For this reason, we believe that supplementation of the Clerodendrum polycephalum leaf extract would prevent epileptic-related disorders in mice induced with epileptic conditions using kainic acid and other behavioral phenotypic models. Here, our findings clearly revealed that Clerodendrum polycephalum leaf extract protects against conditions of epileptic-related disorders and thus might be relevant as a dietary supplement in the prevention or delay of the onset of seizures and epileptic behavior.


Assuntos
Clerodendrum , Lamiaceae , Animais , Anticonvulsivantes/farmacologia , Antioxidantes/uso terapêutico , Arginina , Clerodendrum/metabolismo , Ciclo-Oxigenase 2/metabolismo , Flumazenil , Guanosina Monofosfato , Ácido Caínico , Azul de Metileno , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Pentilenotetrazol , Picrotoxina , Extratos Vegetais/farmacologia , Receptores de GABA-A/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Guanilil Ciclase Solúvel/metabolismo , Espasmo/tratamento farmacológico
5.
Neurochem Int ; 158: 105379, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724873

RESUMO

Gymnosporia heterophylla (synonym Maytenus) is widely used in folk medicine for the treatment of various illness including neurological diseases. This study presents the antidepressant-like and anxiolytic-like effects of novel bioactive constituents; 3,4-seco-1-hydroxy-21-oxoolean-3,11-olide (A2), 1ß,2ß-diacetoxy-9ß-benzoyloxy-6α-nicotinoyloxy-ß-dihydroagarofuran (A5) as well as known 3-acetoxy-1ß-hydroxyLupe-20(29)-ene (selective COX-2; A4) from the aerial parts of G. heterophylla. The antidepressant-like effect was studied using the forced swim test (FST) while the elevated plus maze test (EPMT) and open field test (OFT) were employed for anxiolytic-like effect. Acute treatment with A4 and A5 (0.5, 5 or 10 mg/kg) significantly reduced the duration of immobility and immobile episodes with prolongation of immobility latency in the FST with peak effects observed at 10 and 0.5 mg/kg, respectively. Moreover, antidepressant-like effect of A4 and A5 were relatively better than that of fluoxetine. Conversely, the pretreatment of mice with prazosin (1 mg/kg, α1-adrenoceptor antagonist), yohimbine (1 mg/kg; α2-adrenoceptor antagonist), or sulpiride (50 mg/kg; dopamine D2-receptor antagonist) reversed antidepressant-like effect of A4 and A5 but not WAY 100635 (10 mg/kg, i.p., selective 5-HT1A receptor antagonist), GR 127935 (5 mg/kg, i.p., selective 5-HT1B receptor antagonist), metergoline (4 mg/kg, i.p, non-selective 5-HT2 receptor antagonist), ketanserin (5 mg/kg, i.p., a selective 5-HT2A receptor antagonist) or p-chlorophenylalanine (pCPA) (100 mg/kg, i.p., tryptophan hydroxylase inhibitor) in the FST. Interestingly, A2, A4 and A5 significantly increased the time spent in the open arms of the EPM suggestive of anxiolytic-like action. Findings from this study showed that the novel ß-dihydroagarofuran sesquiterpene alkaloid and triterpenes possesses antidepressant-like and anxiolytic-like effects through enhancement of monoaminergic signaling.


Assuntos
Alcaloides , Ansiolíticos , Sesquiterpenos , Triterpenos , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Camundongos , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Receptores Adrenérgicos , Natação , Triterpenos/farmacologia
6.
Drug Metab Pers Ther ; 37(4): 329-336, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377569

RESUMO

Parkinson disease (PD) is a major public health challenge as many of the current drugs used in its management provide symptomatic relieve without preventing the underlying cause of the neurodegeneration. Similarly, the non-motor complications of PD, especially the gastrointestinal tract (GIT) disturbance increases the disease burden on both the PD patient and caregivers. Different theories have been postulated regarding the mechanisms or pathways involved in PD pathology but gut-brain axis involvement has gained much more momentum. This pathway was first suggested by Braak and colleagues in 2003, where they suggested that PD starts from the GIT before spreading to the brain. However, human exposure to environmental toxicants known to inhibit mitochondrial complex I activity such as rotenone, paraquat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are well associated with PD. Several reports have shown that oral exposure of laboratory animals to rotenone causes mitochondria dysfunction, GIT disturbance, overexpression of alpha synuclein and microbiota imbalance. This review focuses on the mechanism(s) through which rotenone induces PD pathogenesis and potential for therapeutic small molecules targeting these processes at the earliest stages of the disease. We also focused on the interaction between the GI microbiota and PD pathology.


Assuntos
Doença de Parkinson , Humanos , Eixo Encéfalo-Intestino
7.
Drug Metab Pers Ther ; 37(3): 277-287, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218172

RESUMO

OBJECTIVES: This study sought to investigate the beneficial effect of kolaviron (KV) (a biflavonoid) isolated from Garcinia kola seed on chronic unpredictable mild stress (CUMS)-induced anxiety- and depressive-like behavior. METHODS: Male albino mice were randomly divided into six groups (n=8) as follows; Group I: vehicle-control unstressed; Group II: CUMS-control; Group III-V: CUMS + KV 1, 5 or 50 mg/kg, respectively, Group VI: KV (50 mg/kg, p.o.) unstressed mice. Animals were subjected to CUMS for 14 days, followed by estimation of depressive- and anxiety-like behavior from days 14-16. This was followed by biochemical assays for oxidative stress, hypothalamo-pituitary axis, cholinergic, and BDNF signaling. RESULTS: CUMS caused significant reduction in time spent in open arms of elevated plus maze test (EPM) and increase in immobility time in tail suspension test (TST) and forced swim test (FST) ameliorated by KV treatments. KV administration also attenuated CUMS-induced malondialdehyde/nitrite generation and decrease in antioxidant enzymes activities in the prefrontal cortex and hippocampus. CUMS increased serum corticosterone, acetylcholinesterase activity, and reduced BDNF level in the PFC and hippocampus were attenuated by KV administration. CONCLUSIONS: KV prevented CUMS induced anxiety- and depression-like behavior in mice through enhancement of antioxidant defense mechanisms, neurotrophic factors, and cholinergic systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sistema Hipotálamo-Hipofisário , Acetilcolinesterase , Animais , Antidepressivos , Antioxidantes/farmacologia , Ansiedade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Colinérgicos/farmacologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/tratamento farmacológico
8.
Drug Metab Pers Ther ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34391219

RESUMO

Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.

9.
Drug Metab Pers Ther ; 37(2): 99-110, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35737301

RESUMO

Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.


Assuntos
Produtos Biológicos , Doença de Parkinson , Autofagia/fisiologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapêutico
10.
Drug Metab Pers Ther ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32990646

RESUMO

Objectives The brain's cholinergic system occupies a central role in normal cognition and age-related cognitive decline, including Alzheimer's disease (AD). This study sought to investigate the role of antioxidant defense and cholinergic systems on rutin-induced antiamnesia in mice. Methods Rutin (1, 5, or 50 mg/kg, p.o.) or vehicle (10 ml/kg, p.o.) was administered for three consecutive days. One hour post-treatment on day 3, scopolamine (3 mg/kg, i.p) was given, 5 min post-scopolamine injection, open field, Y-maze, or Morris water maze (MWM) (five days consecutive training sessions) tasks was carried out. The mice were sacrificed on day 7 to assays for biomarkers of oxidative stress and cholinergic system. Results Scopolamine significantly reduced spontaneous alternation behavior in Y-maze and prolonged escape latency in MWM tasks when compared to vehicle-treated control indicative of working memory and spatial learning deficits. However, the pretreatment of mice with rutin (1, 5, or 50 mg/kg) prevented scopolamine-induced working memory and spatial learning impairments without affecting spontaneous locomotor activity. Scopolamine-induced nitrosative/oxidative stress and increased acetylcholinesterase activity in the prefrontal cortex and hippocampus were significantly attenuated by the pretreatment of mice with rutin. Conclusions rutin restored cognitive function in scopolamine-induced amnesia through enhancement of antioxidant defense and cholinergic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA