Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Infect Dis ; 22(1): 768, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192672

RESUMO

BACKGROUND: Malaria remains a public health problem in Kenya despite sustained interventions deployed by the government. One of the major impediments to effective malaria control is a lack of accurate diagnosis and effective treatment. This study was conducted to assess clinical malaria incidence and treatment seeking profiles of febrile cases in western Kenya. METHODS: Active case detection of malaria was carried out in three eco-epidemiologically distinct zones topologically characterized as lakeshore, hillside, and highland plateau in Kisumu County, western Kenya, from March 2020 to March 2021. Community Health Volunteers (CHVs) conducted biweekly visits to residents in their households to interview and examine for febrile illness. A febrile case was defined as an individual having fever (axillary temperature ≥ 37.5 °C) during examination or complaints of fever and other nonspecific malaria related symptoms 1-2 days before examination. Prior to the biweekly malaria testing by the CHVs, the participants' treatment seeking methods were based on their behaviors in response to febrile illness. In suspected malaria cases, finger-prick blood samples were taken and tested for malaria parasites with ultra-sensitive Alere® malaria rapid diagnostic tests (RDT) and subjected to real-time polymerase chain reaction (RT-PCR) for quality control examination. RESULTS: Of the total 5838 residents interviewed, 2205 residents had high temperature or reported febrile illness in the previous two days before the visit. Clinical malaria incidence (cases/1000people/month) was highest in the lakeshore zone (24.3), followed by the hillside (18.7) and the highland plateau zone (10.3). Clinical malaria incidence showed significant difference across gender (χ2 = 7.57; df = 2, p = 0.0227) and age group (χ2 = 58.34; df = 4, p < 0.0001). Treatment seeking patterns of malaria febrile cases showed significant difference with doing nothing (48.7%) and purchasing antimalarials from drug shops (38.1%) being the most common health-seeking pattern among the 2205 febrile residents (χ2 = 21.875; df = 4, p < 0.0001). Caregivers of 802 school-aged children aged 5-14 years with fever primarily sought treatment from drug shops (28.9%) and public hospitals (14.0%), with significant lower proportions of children receiving treatment from traditional medication (2.9%) and private hospital (4.4%) (p < 0.0001). There was no significant difference in care givers' treatment seeking patterns for feverish children under the age of five (p = 0.086). Residents with clinical malaria cases in the lakeshore and hillside zones sought treatment primarily from public hospitals (61.9%, 60/97) traditional medication (51.1%, 23/45) respectively (p < 0.0001). However, there was no significant difference in the treatment seeking patterns of highland plateau residents with clinical malaria (p = 0.431).The main factors associated with the decision to seek treatment were the travel distance to the health facility, the severity of the disease, confidence in the treatment, and affordability. CONCLUSION: Clinical malaria incidence remains highest in the Lakeshore (24.3cases/1000 people/month) despite high LLINs coverage (90%). The travel distance to the health facility, severity of disease and affordability were mainly associated with 80% of residents either self-medicating or doing nothing to alleviate their illness. The findings of this study suggest that the Ministry of Health should strengthen community case management of malaria by providing supportive supervision of community health volunteers to advocate for community awareness, early diagnosis, and treatment of malaria.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Criança , Febre/tratamento farmacológico , Febre/epidemiologia , Febre/etiologia , Humanos , Incidência , Recém-Nascido , Quênia/epidemiologia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia
2.
Parasit Vectors ; 15(1): 340, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167549

RESUMO

BACKGROUND: Identification and characterization of larval habitats, documentation of Anopheles spp. composition and abundance, and Plasmodium spp. infection burden are critical components of integrated vector management. The present study aimed to investigate the effect of landscape heterogeneity on entomological and parasitological indices of malaria in western Kenya. METHODS: A cross-sectional entomological and parasitological survey was conducted along an altitudinal transect in three eco-epidemiological zones: lakeshore along the lakeside, hillside, and highland plateau during the wet and dry seasons in 2020 in Kisumu County, Kenya. Larval habitats for Anopheles mosquitoes were identified and characterized. Adult mosquitoes were sampled using pyrethrum spray catches (PSC). Finger prick blood samples were taken from residents and examined for malaria parasites by real-time PCR (RT-PCR). RESULTS: Increased risk of Plasmodium falciparum infection was associated with residency in the lakeshore zone, school-age children, rainy season, and no ITNs (χ2 = 41.201, df = 9, P < 0.0001). Similarly, lakeshore zone and the rainy season significantly increased Anopheles spp. abundance. However, house structures such as wall type and whether the eave spaces were closed or open, as well as the use of ITNs, did not affect Anopheles spp. densities in the homes (χ2 = 38.695, df = 7, P < 0.0001). Anopheles funestus (41.8%) and An. arabiensis (29.1%) were the most abundant vectors in all zones. Sporozoite prevalence was 5.6% and 3.2% in the two species respectively. The lakeshore zone had the highest sporozoite prevalence (4.4%, 7/160) and inoculation rates (135.2 infective bites/person/year). High larval densities were significantly associated with lakeshore zone and hillside zones, animal hoof prints and tire truck larval habitats, wetland and pasture land, and the wet season. The larval habitat types differed significantly across the landscape zones and seasonality (χ2 = 1453.044, df = 298, P < 0.0001). CONCLUSION: The empirical evidence on the impact of landscape heterogeneity and seasonality on vector densities, parasite transmission, and Plasmodium infections in humans emphasizes the importance of tailoring specific adaptive environmental management interventions to specific landscape attributes to have a significant impact on transmission reduction.


Assuntos
Anopheles , Malária Falciparum , Malária , Adulto , Animais , Anopheles/parasitologia , Criança , Estudos Transversais , Humanos , Quênia/epidemiologia , Larva , Malária/epidemiologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Estações do Ano , Esporozoítos
3.
Malar J ; 21(1): 235, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948910

RESUMO

BACKGROUND: Evolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodium parasites. These forces may favour the introduction of species genotypes that adapt to new breeding habitats, potentially having an impact on malaria transmission. Thioester-containing protein 1 (TEP1) of Anopheles gambiae complex plays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms among populations of An. gambiae sensu lato (s.l.) in western Kenya. METHODS: Anopheles gambiae adult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectively from Homa Bay, Kakamega, Bungoma, and Kisumu counties between 2017 and 2020. Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR. TEP1 alleles were determined in 627 anopheles mosquitoes using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of the alleles was sequenced. RESULTS: Two TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively both in Anopheles gambiae and Anopheles arabiensis. There was no significant difference detected among the populations and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST = 0.019) across all sites corresponded to an effective migration index (Nm = 12.571) and low Nei's genetic distance values (< 0.500) among the subpopulation. The comparative fixation index values revealed minimal genetic differentiation between species and high levels of gene flow among populations. CONCLUSION: Genotyping TEP1 has identified two common TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) in An. gambiae s.l. The TEP1 allele genetic diversity and population structure are low in western Kenya.


Assuntos
Anopheles , Malária , Animais , Anopheles/parasitologia , Genótipo , Quênia/epidemiologia , Larva , Malária/parasitologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia
4.
Malar J ; 21(1): 129, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459178

RESUMO

BACKGROUND: Accurate malaria diagnosis and appropriate treatment at local health facilities are critical to reducing morbidity and human reservoir of infectious gametocytes. The current study assessed the accuracy of malaria diagnosis and treatment practices in three health care facilities in rural western Kenya. METHODS: The accuracy of malaria detection and treatment recommended compliance was monitored in two public and one private hospital from November 2019 through March 2020. Blood smears from febrile patients were examined by hospital laboratory technicians and re-examined by an expert microscopists thereafter subjected to real-time polymerase chain reaction (RT-PCR) for quality assurance. In addition, blood smears from patients diagnosed with malaria rapid diagnostic tests (RDT) and presumptively treated with anti-malarial were re-examined by an expert microscopist. RESULTS: A total of 1131 febrile outpatients were assessed for slide positivity (936), RDT (126) and presumptive diagnosis (69). The overall positivity rate for Plasmodium falciparum was 28% (257/936). The odds of slide positivity was higher in public hospitals, 30% (186/624, OR:1.44, 95% CI = 1.05-1.98, p < 0.05) than the private hospital 23% (71/312, OR:0.69, 95% CI = 0.51-0.95, p < 0.05). Anti-malarial treatment was dispensed more at public hospitals (95.2%, 177/186) than the private hospital (78.9%, 56/71, p < 0.0001). Inappropriate anti-malarial treatment, i.e. artemether-lumefantrine given to blood smear negative patients was higher at public hospitals (14.6%, 64/438) than the private hospital (7.1%, 17/241) (p = 0.004). RDT was the most sensitive (73.8%, 95% CI = 39.5-57.4) and specific (89.2%, 95% CI = 78.5-95.2) followed by hospital microscopy (sensitivity 47.6%, 95% CI = 38.2-57.1) and specificity (86.7%, 95% CI = 80.8-91.0). Presumptive diagnosis had the lowest sensitivity (25.7%, 95% CI = 13.1-43.6) and specificity (75.0%, 95% CI = 50.6-90.4). RDT had the highest non-treatment of negatives [98.3% (57/58)] while hospital microscopy had the lowest [77.3% (116/150)]. Health facilities misdiagnosis was at 27.9% (77/276). PCR confirmed 5.2% (4/23) of the 77 misdiagnosed cases as false positive and 68.5% (37/54) as false negative. CONCLUSIONS: The disparity in malaria diagnosis at health facilities with many slide positives reported as negatives and high presumptive treatment of slide negative cases, necessitates augmenting microscopic with RDTs and calls for Ministry of Health strengthening supportive infrastructure to be in compliance with treatment guidelines of Test, Treat, and Track to improve malaria case management.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Testes Diagnósticos de Rotina , Febre , Pessoal de Saúde , Humanos , Quênia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária Falciparum/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , População Rural , Sensibilidade e Especificidade
5.
Malar J ; 20(1): 472, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930283

RESUMO

BACKGROUND: The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS: A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS: Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION: Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.


Assuntos
Malária Falciparum/epidemiologia , Microscopia/estatística & dados numéricos , Plasmodium falciparum/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , População Rural/estatística & dados numéricos , Doenças não Diagnosticadas/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Doenças não Diagnosticadas/parasitologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA