Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Mood Anxiety Disord ; 4(1): 1, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24447313

RESUMO

BACKGROUND: Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. RESULTS: CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed.Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls.Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT1A receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. CONCLUSIONS: These results suggest that CRFR2 are required for proper functionality of 5-HT1A receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT content in lateral septum and subiculum was notably altered. These areas are important for anxiety, and are also implicated in reward and the pathophysiology of addiction. The role of CRFR2 in stress-related psychopathologies deserves further consideration.

2.
Biol Psychiatry ; 72(6): 437-47, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22704666

RESUMO

BACKGROUND: The corticotropin-releasing factor type 2 receptor (CRFR2) is suggested to play an important role in aiding recovery from acute stress, but any chronic effects of CRFR2 activation are unknown. CRFR2 in the midbrain raphé nuclei modulate serotonergic activity of this key source of serotonin (5-HT) forebrain innervation. METHODS: Transgenic mice overexpressing the highly specific CRFR2 ligand urocortin 3 (UCN3OE) were analyzed for stress-related behaviors and hypothalamic-pituitary-adrenal axis responses. Responses to 5-HT receptor agonist challenge were assessed by local cerebral glucose utilization, while 5-HT and 5-hydroxyindoleacetic acid content were quantified in limbic brain regions. RESULTS: Mice overexpressing urocortin 3 exhibited increased stress-related behaviors under basal conditions and impaired retention of spatial memory compared with control mice. Following acute stress, unlike control mice, they exhibited no further increase in these stress-related behaviors and showed an attenuated adrenocorticotropic hormone response. 5-HT and 5-hydroxyindoleacetic acid content of limbic nuclei were differentially regulated by stress in UCN3OE mice as compared with control mice. Responses to 5-HT type 1A receptor challenge were significantly and specifically reduced in UCN3OE mice. The distribution pattern of local cerebral glucose utilization and 5-HT type 1A receptor messenger RNA expression levels suggested this effect was mediated in the raphé nuclei. CONCLUSIONS: Chronic activation of CRFR2 promotes an anxiety-like state, yet with attenuated behavioral and hypothalamic-pituitary-adrenal axis responses to stress. This is reminiscent of stress-related atypical psychiatric syndromes such as posttraumatic stress disorder, chronic fatigue, and chronic pain states. This new understanding indicates CRFR2 antagonism as a potential novel therapeutic target for such disorders.


Assuntos
Ansiedade/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Urocortinas/genética , Análise de Variância , Animais , Ansiedade/genética , Encéfalo/metabolismo , Cromatografia Líquida , Corticosterona/metabolismo , Ácido Hidroxi-Indolacético/análise , Hibridização In Situ , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT1A de Serotonina/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Serotonina/análise , Estresse Fisiológico , Estresse Psicológico , Urocortinas/metabolismo
3.
J Neurosci Res ; 87(10): 2375-85, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19326435

RESUMO

Polymorphic variation in the human serotonin transporter (SERT; 5-HTT) gene resulting in a lifelong increase in SERT expression is associated with reduced anxiety and a reduced risk of affective disorder. Evidence also suggests that sex influences the effect of this polymorphism on affective functioning. Here we use novel transgenic mice overexpressing human SERT (hSERT OVR) to investigate the possible influence of sex on the alterations in SERT protein expression and cerebral function that occur in response to increased SERT gene transcription. SERT binding levels were significantly increased in the brain of hSERT OVR mice in a region-dependent manner. The increased SERT binding in hSERT OVR mice was more pronounced in female than in male mice. Cerebral metabolism, as reflected by a quantitative index of local cerebral glucose utilization (iLCMRglu), was significantly decreased in many brain regions in hSERT OVR female as compared with wild-type female mice, whereas there was no evidence for a significant effect in any region in males. The ability of hSERT overexpression to modify cerebral metabolism was significantly greater in females than in males. This effect was particularly pronounced in the medial striatum, globus pallidus, somatosensory cortex, mamillary body, and ventrolateral thalamus. Overall, these findings demonstrate that the influence of a lifelong increase in SERT gene transcription on cerebral function is greater in females than in males and may relate, in part, to the influence of sex on genetically driven increases in SERT protein expression.


Assuntos
Córtex Cerebral/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Caracteres Sexuais , Análise de Variância , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Glicemia/fisiologia , Isótopos de Carbono/metabolismo , Córtex Cerebral/anatomia & histologia , Feminino , Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Paroxetina/farmacocinética , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Distribuição Tecidual/efeitos dos fármacos
4.
J Neurosci Methods ; 175(1): 25-35, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18762213

RESUMO

The original [(14)C]-2-deoxyglucose autoradiographic imaging technique allows for the quantitative determination of local cerebral glucose utilisation (LCMRglu) [Sokoloff L, Reivich, M, Kennedy C, Desrosiers M, Patlak C, Pettigrew K, et al. The 2-deoxyglucose-C-14 method for measurement of local cerebral glucose utilisation-theory, procedure and normal values in conscious and anestherized albino rats. J Neurochem 1977;28:897-916]. The range of applications to which the quantitative method can be readily applied is limited, however, by the requirement for the intermittent measurement of arterial radiotracer and glucose concentrations throughout the experiment, via intravascular cannulation. Some studies have applied a modified, semi-quantitative approach to estimate LCMRglu while circumventing the requirement for intravascular cannulation [Kelly S, Bieneman A, Uney J, McCulloch J. Cerebral glucose utilization in transgenic mice over-expressing heat shock protein 70 is altered by dizocilpine. Eur J Neurosci 2002;15(6):945-52; Jordan GR, McCulloch J, Shahid M, Hill DR, Henry B, Horsburgh K. Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by C-14-2-deoxyglucose autoradiography. Neuropharmacology 2005;49(2):254-64]. In this method only a terminal blood sample is collected for the determination of plasma [(14)C] and [glucose] and the rate of LCMRglu in each brain region of interest (RoI) is estimated by comparing the [(14)C] concentration in each region relative to a selected control region, which is proposed to demonstrate metabolic stability between the experimental groups. Here we show that the semi-quantitative method has reduced validity in the measurement of LCMRglu as compared to the quantitative method and that the validity of this technique is further compromised by the inability of the methods applied within the analysis to appropriately determine metabolic stability in the selected standard region. To address these issues we have developed a novel form of analysis that provides an index of LCMRglu (iLCMRglu) for application when using the semi-quantitative approach. Provided that the methodological constraints inherent in 2-deoxyglucose autoradiography (e.g. normoglycaemia) are met this analytical technique both increases the validity of LCMRglu estimation by the semi-quantitative method and also allows for its broader experimental application.


Assuntos
Autorradiografia , Glicemia/metabolismo , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Desoxiglucose/metabolismo , Animais , Glicemia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Isótopos de Carbono/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Reprodutibilidade dos Testes , Serotoninérgicos
5.
J Neurosci ; 26(35): 8955-64, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16943551

RESUMO

A commonly occurring polymorphic variant of the human 5-hydroxytryptamine (5-HT) transporter (5-HTT) gene that increases 5-HTT expression has been associated with reduced anxiety levels in human volunteer and patient populations. However, it is not known whether this linkage between genotype and anxiety relates to variation in 5-HTT expression and consequent changes in 5-HT transmission. Here we test this hypothesis by measuring the neurochemical and behavioral characteristics of a mouse genetically engineered to overexpress the 5-HTT. Transgenic mice overexpressing the human 5-HTT (h5-HTT) were produced from a 500 kb yeast artificial chromosome construct. These transgenic mice showed the presence of h5-HTT mRNA in the midbrain raphe nuclei, as well as a twofold to threefold increase in 5-HTT binding sites in the raphe nuclei and a range of forebrain regions. The transgenic mice had reduced regional brain whole-tissue levels of 5-HT and, in microdialysis experiments, decreased brain extracellular 5-HT, which reversed on administration of the 5-HTT inhibitor paroxetine. Compared with wild-type mice, the transgenic mice exhibited a low-anxiety phenotype in plus maze and hyponeophagia tests. Furthermore, in the plus maze test, the low-anxiety phenotype of the transgenic mice was reversed by acute administration of paroxetine, suggesting a direct link between the behavior, 5-HTT overexpression, and low extracellular 5-HT. In toto, these findings demonstrate that associations between increased 5-HTT expression and anxiety can be modeled in mice and may be specifically mediated by decreases in 5-HT transmission.


Assuntos
Ansiedade/fisiopatologia , Ansiedade/psicologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Animais , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Animal , Sítios de Ligação , Encéfalo/metabolismo , Espaço Extracelular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Fenótipo , RNA Mensageiro/metabolismo , Serotonina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/biossíntese
6.
Eur J Neurosci ; 24(2): 509-19, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16836637

RESUMO

Acutely, 3,4,-methylenedioxymethamphetamine (MDMA) induces cerebrovascular dysfunction [Quate et al., (2004)Psychopharmacol., 173, 287-295]. In the longer term the same single dose results in depletion of 5-hydroxytrptamine (5-HT) nerve terminals. In this study we examined the cerebrovascular consequences of this persistent neurodegeneration, and the acute effects of subsequent MDMA exposure, upon the relationship that normally exists between local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCMRglu). Dark agouti (DA) rats were pre-treated with 15 mg/kg i.p. MDMA or saline. Three weeks later, rats from each pre-treatment group were treated with an acute dose of MDMA (15 mg/kg i.p.) or saline. Quantitative autoradiographic imaging was used to measure LCBF or LCMRglu with [(14)C]-iodoantipyrine and [(14)C]-2-deoxyglucose, respectively. Serotonergic terminal depletion was assessed using radioligand binding with [(3)H]-paroxetine and immunohistochemistry. Three weeks after MDMA pre-treatment there were significant reductions in densities of 5-HT transporter (SERT)-positive fibres (-46%) and [(3)H]-paroxetine binding (-47%). In animals pre-treated with MDMA there were widespread significant decreases in LCMRglu, but no change in LCBF indicating a persistent loss of cerebrovascular constrictor tone. In both pre-treatment groups, acute MDMA produced significant increases in LCMRglu, while LCBF was significantly decreased. In 50% of MDMA-pre-treated rats, random areas of focal hyperaemia indicated a loss of autoregulatory capacity in response to MDMA-induced hypertension. These results suggest that cerebrovascular regulatory dysfunction resulting from acute exposure to MDMA is not diminished by previous exposure, despite a significant depletion in 5-HT terminals. However, there may be a sub-population, or individual circumstances, in which this dysfunction develops into a condition that might predispose to stroke.


Assuntos
Artérias Cerebrais/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Terminações Pré-Sinápticas/efeitos dos fármacos , Doença Aguda , Animais , Antipirina/análogos & derivados , Antipirina/metabolismo , Vias Autônomas/efeitos dos fármacos , Vias Autônomas/metabolismo , Vias Autônomas/fisiopatologia , Radioisótopos de Carbono , Artérias Cerebrais/inervação , Artérias Cerebrais/fisiopatologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Desoxiglucose/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hiperemia/induzido quimicamente , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Masculino , Terminações Pré-Sinápticas/metabolismo , Ensaio Radioligante , Ratos , Serotonina/metabolismo , Serotoninérgicos/efeitos adversos , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
7.
Neuron ; 50(3): 479-89, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16675401

RESUMO

Reconsolidation is a putative neuronal process in which the retrieval of a previously consolidated memory returns it to a labile state that is once again subject to stabilization. This study explored the idea that reconsolidation occurs in spatial memory when animals retrieve memory under circumstances in which new memory encoding is likely to occur. Control studies confirmed that intrahippocampal infusions of anisomycin inhibited protein synthesis locally and that the spatial training protocols we used are subject to overnight protein synthesis-dependent consolidation. We then compared the impact of anisomycin in two conditions: when memory retrieval occurred in a reference memory task after performance had reached asymptote over several days; and after a comparable extent of training of a delayed matching-to-place task in which new memory encoding was required each day. Sensitivity to intrahippocampal anisomycin was observed only in the protocol involving new memory encoding at the time of retrieval.


Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Vias Neurais/metabolismo , Percepção Espacial/fisiologia , Animais , Anisomicina/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Vias Neurais/efeitos dos fármacos , Testes Neuropsicológicos , Orientação/efeitos dos fármacos , Orientação/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Percepção Espacial/efeitos dos fármacos
8.
Psychopharmacology (Berl) ; 173(3-4): 296-309, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15083265

RESUMO

RATIONALE: Despite the well documented neurochemical actions of 3,4-methylenedioxymethamphetamine (MDMA), acute effects in rats previously exposed to the drug have not been extensively explored. OBJECTIVE: To examine motor activity and vigilance effects of MDMA in drug-naive rats and in rats exposed to the drug 3 weeks earlier. METHODS: MDMA (15 mg/kg, i.p.) was administered to Dark Agouti rats. Motor activity, wakefulness, light slow wave sleep (SWS-1), deep slow wave sleep (SWS-2) and paradoxical sleep (PS), sleep and PS latencies were measured. Acrophases and amplitudes of the 24 h cycles were calculated by cosinor analysis. In parallel groups, local cerebral glucose utilization (lCMRglu) and (3H)-paroxetine binding were measured in motor areas of the brain. RESULTS: In drug-naive rats MDMA caused marked increases in motor activity and wakefulness for at least 5-6 h. Circadian patterns of motor activity and sleep/vigilance parameters were altered up to 5 days after treatment. Despite most parameters tending to return to normal, there were still significant effects of MDMA on motor activity, wakefulness, and SWS-2 28 days later. Acute MDMA administration caused significant increases in lCMRglu, but after 3 weeks lCMRglu was decreased in the same brain areas. No significant change in [3H]paroxetine binding was observed in motor areas, although significant reductions were seen elsewhere (neocortex -81%). In rats exposed to MDMA 3 weeks earlier, most acute effects induced by MDMA administration were similar to those in drug-naive rats, but shorter duration of the acute effects were found in motor activity and vigilance. CONCLUSIONS: Our findings provide evidence that MDMA use can lead to long-term changes in regulation of circadian rhythms, motor activity and sleep generation.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Sono/efeitos dos fármacos , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glucose/metabolismo , Masculino , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Ensaio Radioligante , Ratos , Vigília/efeitos dos fármacos
9.
Psychopharmacology (Berl) ; 173(3-4): 287-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14985928

RESUMO

RATIONALE: Clinical reports indicate that acute exposure to 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") may induce pathological cerebrovascular responses in human users of the drug, however, the mechanism by which MDMA might effect these pathological changes is not clear. OBJECTIVES: To examine the effects of acute MDMA administration on the relationship between local cerebral blood flow (LCBF) and local cerebral glucose utilisation (LCMRglu); to determine the effect, if any, acute exposure to MDMA has on the cerebral circulation, independently of alterations in cerebral metabolic demand. METHODS: Dark Agouti rats were injected with 15 mg.kg(-1) i.p. MDMA or saline equivalent. LCBF and LCMRglu were measured in 50 brain areas using the fully quantitative [14C]iodoantipyrine and [14C]2-deoxyglucose autoradiographic techniques, respectively. RESULTS: MDMA produced significant increases in LCMRglu in 23 brain areas, most markedly in the motor system (globus pallidus; +82%; medial striatum; +71%). In contrast, significant decreases in LCBF were observed in 28 brain areas, most markedly in primary sensory nuclei (superior colliculus; -32%) and limbic areas (anterior thalamus; -34%). Global analysis revealed a close correlation (r=0.87) between LCMRglu and LCBF with a ratio of 1.53 in controls. Despite the divergence of LCMRglu (increases) and LCBF (decreases) in MDMA-treated groups, there was a similar close correlation (r=0.84), but the ratio was decreased to 1.22. CONCLUSIONS: This study provides clear evidence that acute exposure to MDMA results in cerebrovascular dysfunction. The uncoupling of LCBF from underlying metabolic demand, possibly due to the vasoconstrictor action of 5-HT, could provide the basis for oligaemia-induced pathological changes in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Glucose/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Masculino , Ratos
10.
Acta Pharmacol Sin ; 24(8): 729-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904270

RESUMO

AIM: To investigate modulation of antagonist and agonist binding to adenosine A1 receptors by MgCl2 and 5 -guanylimidodiphosphate (Gpp(NH)p) using rat brain membranes and the A1 antagonist [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and the A1 agonist [3H]-2-chloro-N6-cyclopentyladenosine ([3H]CCPA). METHODS: Parallel saturation and inhibition studies were performed using well-characterised radioligand binding assays and a Brandel Cell Harvester. RESULTS: MgCl2 produced a concentration-dependent decrease (44%), whereas Gpp(NH)p increased [3H]DPCPX binding (19%). In [3H]DPCPX competition studies, agonist affinity was 1.5-14.6-fold higher and 4.6-10-fold lower in the presence of 10 mmol/L MgCl2 and 10 micromol/L Gpp(NH)p respectively; antagonist affinity was unaffected. The decrease in agonist affinity with increasing Gpp(NH)p concentrations was due to a reduction in the proportion of binding to the high affinity receptor state. In contrast to [3H]DPCPX, MgCl2 produced a concentration-dependent increase (72%) and Gpp(NH)p a decrease (85%) in [3H]CCPA binding. Using [3H]CCPA, agonist affinities were 5-17-fold higher than those for [3H]DPCPX, consistent with binding only to the high affinity receptor state. Agonist affinity was 1.3-10.5-fold higher and 2.4-4.7-fold lower on adding MgCl2 or Gpp(NH)p respectively; antagonist affinities were as for [3H]DPCPX. CONCLUSION: The inconsistencies surrounding the effects of MgCl2 and guanine nucleotides on radioligand binding to adenosine A1 receptors were systematically examined. The effects of MgCl2 and Gpp(NH)p on agonist binding to A1 receptors are consistent with their roles in stimulating GTP-hydrolysis at the G-protein alpha-subunit and in blocking formation of the high affinity agonist-receptor-G protein complex.


Assuntos
Adenosina/análogos & derivados , Guanilil Imidodifosfato/farmacologia , Cloreto de Magnésio/farmacologia , Receptor A1 de Adenosina/metabolismo , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Masculino , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Xantinas/farmacologia
11.
Br J Pharmacol ; 137(7): 963-70, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12429568

RESUMO

1. In this study we have examined methylenedioxymethamphetamine (MDMA)-induced toxicity in perinatal rat brain, related this to normal development of serotonin transporter sites (SERT), and determined whether early exposure to MDMA subsequently alters cerebral function in adults. 2. Perinatal development of SERT was visualized and quantified using [(3)H]-paroxetine binding autoradiography in embryonic and neonatal rat brain from embryonic day 15 (E15) to postnatal day p30 (p30). Cerebral glucose utilization (lCMR(glu)) was measured by 2-deoxyglucose autoradiography in adult rats. 3. [(3)H]-Paroxetine binding was observed in forebrain from E18. From birth (p0), binding was organized into neocortical columns (75% higher at p10 than in adult) which declined toward adult levels between p20 and p25. 4. MDMA treatment (20 mg x kg(-1) s.c. twice daily for four days) commencing at developmental stages from E15 (treatment given to dams) to p20, had no effect upon [(3)H]-paroxetine binding measured at p40. Treatments started on p25 or later resulted in significant decreases in [(3)H]-paroxetine binding (>or=46%). This was coincident with the development of adult patterns of binding in forebrain. 5. Despite the lack of MDMA-induced neurotoxicity, rats treated in utero (E15) showed increased lCMR(glu) in locus coeruleus (+37%), and in areas receiving ascending noradrenergic innervation, such as anterior thalamus (+44%) and septal nucleus (+24%). 6 These studies confirm that the susceptibility of serotonergic terminals to the neurotoxic properties of MDMA is absent in the immediate perinatal period, but also suggests that in utero MDMA exposure produces significant long-term effects on cerebral function by a mechanism as yet unknown.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Encéfalo/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Animais , Animais Recém-Nascidos , Ligação Competitiva , Encéfalo/metabolismo , Feminino , Glucose/metabolismo , Masculino , Paroxetina/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Serotonina/farmacocinética , Fatores de Tempo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA