Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 464, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942749

RESUMO

The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFß) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFßR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFßR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.


Assuntos
Progressão da Doença , Glioblastoma , Integrina alfaV , Transdução de Sinais , Fator de Crescimento Transformador beta , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fator de Crescimento Transformador beta/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Integrina alfaV/metabolismo , Integrina alfaV/genética , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Exp Mol Med ; 52(4): 629-642, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32280134

RESUMO

Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors. In this study, we propose peroxisome proliferator-activated receptor gamma (PPARγ) as a potential diagnostic and prognostic biomarker as well as therapeutic target for MES GBM; we used multiple approaches to assess PPARγ, including biostatistics analysis and assessment of preclinical studies. First, we found that PPARγ was exclusively expressed in MES glioblastoma stem cells (GSCs), and ligand activation of endogenous PPARγ suppressed cell growth and stemness in MES GSCs. Further in vivo studies involving orthotopic and heterotopic xenograft mouse models confirmed the therapeutic efficacy of targeting PPARγ; compared to control mice, those that received ligand treatment exhibited longer survival as well as decreased tumor burden. Mechanistically, PPARγ activation suppressed proneural-mesenchymal transition (PMT) by inhibiting the STAT3 signaling pathway. Biostatistical analysis using The Cancer Genomics Atlas (TCGA, n = 206) and REMBRANDT (n = 329) revealed that PPARγ upregulation is linked to poor overall survival and disease-free survival of GBM patients. Analysis was performed on prospective (n = 2) and retrospective (n = 6) GBM patient tissues, and we finally confirmed that PPARγ expression was distinctly upregulated in MES GBM. Collectively, this study provides insight into PPARγ as a potential therapeutic target for patients with MES GBM.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glioblastoma/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Camundongos , PPAR gama/genética , Prognóstico , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 11(2): e0150279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919318

RESUMO

The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.


Assuntos
Carcinoma de Células Escamosas/patologia , Receptores ErbB/antagonistas & inibidores , Neoplasias Bucais/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Óxido Nítrico/farmacologia , Gases em Plasma/farmacologia , Espécies Reativas de Nitrogênio/farmacologia , Acetilcisteína/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Células Cultivadas , Meios de Cultura/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Radicais Livres , Gengiva/citologia , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/terapia , Óxido Nítrico/antagonistas & inibidores , Estresse Oxidativo , Gases em Plasma/uso terapêutico , Proteólise , Espécies Reativas de Oxigênio , Compostos de Sulfidrila/análise , Células Tumorais Cultivadas
4.
Dent Mater ; 31(2): 123-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25498522

RESUMO

OBJECTIVE: Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy. METHODS: As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15. RESULTS: Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (P<0.05) than in Ag-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8In(3+)mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation. SIGNIFICANCE: In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ligas Dentárias/química , Queratinócitos/efeitos dos fármacos , Western Blotting , Corrosão , Técnicas Eletroquímicas , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/metabolismo , Fibronectinas/metabolismo , Ligas de Ouro/química , Humanos , Índio/química , Íons , Queratinócitos/metabolismo , Queratinas/metabolismo , Teste de Materiais , Paládio/química , Precursores de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Espectrofotometria Atômica , Difração de Raios X
5.
Ann Biomed Eng ; 42(7): 1424-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24129755

RESUMO

Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and ß-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 µm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.


Assuntos
Fosfatos de Cálcio/química , Diferenciação Celular , Proliferação de Células , Hidrogéis/química , Osteoblastos/metabolismo , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos , Osteoblastos/citologia , Porosidade
6.
Mol Cell Biochem ; 375(1-2): 59-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23225230

RESUMO

Striatal neuronal cell death is one of the pathological features of Huntington's disease (HD). Overexpression of some heat shock proteins (HSPs) has been reported to suppress the aggregate formation of mutant huntingtin and concurrent cell death. Heat shock transcription factor-1 (HSF 1), a major transcription factor of HSPs, has also been reported to be increased in HD models. However, the exact role of HSF 1 in the pathogenesis of HD has not been clearly elucidated. 3-Nitropropionic acid (3NP), an irreversible inhibitor of the mitochondrial complex II, induces selective damage to the striatum in animals and produces clinical features of HD. To investigate roles of HSF 1 on 3NP-induced oxidative stress, HSF 1 was transiently overexpressed in striatal cells. Expression of HSF 1 significantly attenuated 3NP-induced apoptotic striatal cell death and resulted in increased expression of HSP 70. Furthermore, expression of HSF 1 significantly attenuated 3NP-induced intracellular reactive oxygen species (ROS) generation. Taken together, the present study clearly demonstrates that HSF 1 attenuates 3NP-induced apoptotic striatal cell death and ROS generation, possibly through HSP70 expression, suggesting that HSF 1 might be a valuable therapeutic target in the treatment of HD.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Neostriado/patologia , Nitrocompostos/farmacologia , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Expressão Gênica , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Azul de Metileno/farmacologia , Camundongos , Neostriado/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA