Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 18(10): 1522-1533, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32665429

RESUMO

Children suffering from neurologic cancers undergoing chemotherapy and radiotherapy are at high risk of reduced neurocognitive abilities likely via damage to proliferating neural stem cells (NSC). Therefore, strategies to protect NSCs are needed. We argue that induced cell-cycle arrest/quiescence in NSCs during cancer treatment can represent such a strategy. Here, we show that hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are dynamically expressed over the cell cycle in NSCs, depolarize the membrane potential, underlie spontaneous calcium oscillations and are required to maintain NSCs in the actively proliferating pool. Hyperpolarizing pharmacologic inhibition of HCN channels during exposure to ionizing radiation protects NSCs cells in neurogenic brain regions of young mice. In contrast, brain tumor-initiating cells, which also express HCN channels, remain proliferative during HCN inhibition. IMPLICATIONS: Our finding that NSCs can be selectively rescued while cancer cells remain sensitive to the treatment, provide a foundation for reduction of cognitive impairment in children with neurologic cancers.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neoplasias/tratamento farmacológico , Células-Tronco Neurais/metabolismo , Animais , Proliferação de Células , Humanos , Camundongos
2.
Springerplus ; 5: 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26835223

RESUMO

Pluripotent stem cells are the starting cell type of choice for the development of many cell-based regenerative therapies due to their rapid and unlimited proliferation and broad differentiation potential. The unique pluripotent cell cycle underlies both these properties. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) family channels have previously been reported to modulate mouse embryonic stem cell (ESC) proliferation and here we characterize the effects of HCN inhibitor ZD7288 on ESC proliferation and stem cell identity. The doubling time of cells treated with the HCN blocker increased by ~30 % due to longer G1 and S phases, resulting in a nearly twofold reduction in ESC numbers after 4 day serum-free culture. Slower progression through S phase was not accompanied by H2AX phosphorylation or cell stalling at transition points, although EdU incorporation in treated cells was reduced. Despite the drastic cell cycle perturbations, the pluripotent status of the cells was not compromised by treatment. Cultures treated with the HCN blocker in maintenance conditions maintained pluripotency marker expression on both RNA and protein level, although we observed a reversible effect on morphology and colony formation frequency. Addition of ZD7288 in differentiating media improved FBS-driven differentiation, but not directed differentiation to neuroectoderm, further indicating that altered cell cycle structure does not necessarily compromise pluripotency and drive ESCs to differentiation. The categorically different outcomes of ZD7288 use during differentiation indicate that cell culture context can be determinative for effects of ion-modulatory molecules and underscores the need for exploring their action in serum-free conditions demanded by potential clinical use.

3.
Oncotarget ; 6(35): 37083-97, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26397227

RESUMO

Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipocampo/citologia , Cloreto de Lítio/farmacologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Radioisótopos de Cobalto , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Citometria de Fluxo , Raios gama , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Técnicas In Vitro , Cloreto de Lítio/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos da radiação , Neurogênese/efeitos dos fármacos , Neurogênese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA