Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(12): e0145364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691919

RESUMO

Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.


Assuntos
Evolução Biológica , Dioscorea/fisiologia , Variação Genética , Filogenia , Agricultura , Teorema de Bayes , Camarões , Produtos Agrícolas , Dioscorea/genética , Marcadores Genéticos
2.
J Proteomics ; 78: 123-33, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23178419

RESUMO

Somatic embryogenesis can efficiently foster the propagation of Theobroma cacao, but the poor quality of resulted plantlet hinders the use of this technique in the commercial scale. The current study has been initiated to systematically compare the physiological mechanisms underlying somatic and zygotic embryogenesis in T. cacao on the proteome level. About 1000 protein spots per fraction could be separated by two-dimensional isoelectric focusing/SDS PAGE. More than 50 of the protein spots clearly differed in abundance between zygotic and somatic embryos: 33 proteins spots were at least 3-fold higher in abundance in zygotic embryos and 20 in somatic embryos. Analyses of these protein spots differing in volume by mass spectrometry resulted in the identification of 68 distinct proteins. Many of the identified proteins are involved in genetic information processing (21 proteins), carbohydrate metabolism (11 proteins) and stress response (7 proteins). Somatic embryos especially displayed many stress related proteins, few enzymes involved in storage compound synthesis and an exceptional high abundance of endopeptidase inhibitors. Phosphoenolpyruvate carboxylase, which was accumulated more than 3-fold higher in zygotic embryos, represents a prominent enzyme in the storage compound metabolism in cacao seeds. Implications on the improvement of somatic embryogenesis in cacao are discussed.


Assuntos
Cacau/metabolismo , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Proteoma/metabolismo , Proteômica , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA