Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14504, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914610

RESUMO

This research aimed to identify materials capable of emitting visible light useful for dose management at ultra-high dose rate (uHDR). Various materials were irradiated with proton beams at a normal dose rate (NDR) and uHDR, and the resulting surface luminescence was captured using a high-sensitivity camera. The luminescence images were compared with the corresponding dose distributions. The luminescence of Tough Water Phantoms (Kyoto Kagaku Co. Ltd.) with various thicknesses was also observed to evaluate the depth distributions. Dose distributions were measured using two-dimensional ionization chamber detector arrays. The Tough Bone Phantom (Kyoto Kagaku Co. Ltd.) exhibited the strongest luminescence among the materials, followed by the Tough Water Phantom. The metals exhibited relatively weak luminescence. The luminescence profiles of the Tough Water Phantom, water, the Tough Lung Phantom (Kyoto Kagaku Co. Ltd.), and an acrylic were similar to the dose profiles. The luminescence distribution of the Tough Water Phantom in the depth direction was similar to that of the dose distributions. The luminescence at uHDR and NDR were approximately equivalent. The Tough Water Phantom was found to be a suitable material for dosimetry, even at uHDR. More detailed measurement data, such as wavelength data, must be collected to elucidate the luminescence mechanism.

2.
J Appl Microbiol ; 132(1): 298-310, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34192394

RESUMO

AIMS: The present study evaluated the antimicrobial activities of the medicinal plant Mallotus japonicus against the fish pathogenic bacteria, Aeromonas hydrophila, Aeromonas salmonicida, Edwardisella tarda and Vibrio anguillarum, and also describes the antimicrobial activities of the major and minor active compounds present within the plant extract. The synergistic effects by way of combination of these compounds were also evaluated and described. Chemical constituents of the plant extracts were analysed using the liquid chromatography-mass spectrometry (LC-MS) and described. METHODS AND RESULTS: The diethyl ether-extract of the plant elicited the strongest antibacterial activity against the challenged bacterial species, followed by ethanol- and methanol-extracts. The major active compound of the extracts, bergenin, demonstrated no antibacterial activity, but other compounds in the extracts did. CONCLUSION: Mallotus japonicus could be used as a prophylaxis to treat bacterial disease infections of fishes and its diethyl ether-extract has the potential of an alternative to antibiotic treatment in aquaculture. SIGNIFICANCE AND IMPACT OF THE STUDY: Mallotus japonicus diethyl ether-extract has the potential of an alternative to antibiotic treatment in aquaculture.


Assuntos
Doenças dos Peixes , Mallotus (Planta) , Vibrio , Aeromonas hydrophila , Animais , Antibacterianos/farmacologia , Edwardsiella tarda , Doenças dos Peixes/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA