Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nature ; 618(7967): 981-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225998

RESUMO

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Plantas , Solo/química , Conjuntos de Dados como Assunto , Aprendizado Profundo
3.
ScientificWorldJournal ; 2022: 3944810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545372

RESUMO

Land use and land cover (LULC) parameters influence the hydrological and ecological processes taking place in a watershed. Understanding the changes in LULC is essential in the planning and development of management strategies for water resources. The purpose of the study was to detect changes in LULC in the Kibwezi watershed in Kenya, using geospatial approaches. Supervised and unsupervised classification techniques using remote sensing (RS) and geographical information system (GIS) were used to process Landsat imagery for 1999, 2009, and 2019 while ERDAS IMAGINE™ 14 and MS Excel software were used to derive change detection, and the Soil and Water Assessment Tool (SWAT) model was used to delineate the watershed using an in-built watershed delineation tool. The watershed was classified into ten major LULC classes, namely cropland (rainfed), cropland (irrigated), cropland (perennial), crop and shrubs/trees, closed shrublands, open shrubland, shrub grasslands, wooded shrublands, riverine woodlands, and built-up land. The results showed that LULC under shrub grassland, urban areas, and crops and shrubs increased drastically by 552.5%, 366.2%, and 357.1% respectively between 1999 and 2019 with an annual increase of 35.55%, 35.38%, and 33.86% per annum. The area under open shrubland and closed shrubland declined by73.7%, and 30.4% annually. These LULC transformations pose a negative impact on the watershed resources. There is therefore a need for proper management of the watershed for sustainable socio-economic development of the Kibwezi area.


Assuntos
Florestas , Sistemas de Informação Geográfica , Quênia , Solo , Árvores , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA