Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 105(10): 2749-2770, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34253045

RESUMO

Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.


Assuntos
Magnaporthe , Oryza , África Subsaariana , Magnaporthe/genética , Melhoramento Vegetal , Doenças das Plantas
2.
Front Plant Sci ; 12: 671355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267770

RESUMO

Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.

3.
ISME J ; 14(2): 492-505, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31666657

RESUMO

The impact of modern agriculture on the evolutionary trajectory of plant pathogens is a central question for crop sustainability. The Green Revolution replaced traditional rice landraces with high-yielding varieties, creating a uniform selection pressure that allows measuring the effect of such intervention. In this study, we analyzed a unique historical pathogen record to assess the impact of a major resistance gene, Xa4, in the population structure of Xanthomonas oryzae pv. oryzae (Xoo) collected in the Philippines in a span of 40 years. After the deployment of Xa4 in the early 1960s, the emergence of virulent pathogen groups was associated with the increasing adoption of rice varieties carrying Xa4, which reached 80% of the total planted area. Whole genomes analysis of a representative sample suggested six major pathogen groups with distinctive signatures of selection in genes related to secretion system, cell-wall degradation, lipopolysaccharide production, and detoxification of host defense components. Association genetics also suggested that each population might evolve different mechanisms to adapt to Xa4. Interestingly, we found evidence of strong selective sweep affecting several populations in the mid-1980s, suggesting a major bottleneck that coincides with the peak of Xa4 deployment in the archipelago. Our study highlights how modern agricultural practices facilitate the adaptation of pathogens to overcome the effects of standard crop improvement efforts.


Assuntos
Resistência à Doença/genética , Genética Microbiana , Oryza/microbiologia , Seleção Artificial/genética , Xanthomonas/genética , Genes de Plantas , Genética Populacional , Genoma Bacteriano , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Patologia Vegetal , Proteínas de Plantas/genética , Xanthomonas/patogenicidade
4.
J Plant Physiol ; 212: 80-93, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28282527

RESUMO

The global temperatures are predicted to rise due to climate change. However, knowledge on the mechanisms underlying the effect of high temperature (HT) on plant pathogen interaction is limited. We investigated the effect of elevated temperature on host phenotypic, biochemical and gene expression patterns in the rice-Magnaporthe oryzae (Mo) pathosystem using two genetic backgrounds, Co39 (Oryzae sativa-indica) and LTH (O. sativa-japonica) with (CO and LT) and without (Co39 and LTH) R gene (Pi54). After exposure to 28°C and 35°C the two genetic backgrounds showed contrasting responses to Mo. At 28°C, CO, Co39 and LTH displayed a more severe disease phenotype than LT. Surprisingly, CO became resistant to Mo after exposure to 35°C. CO and LT were used for further analysis to determine the defence related biochemical and transcriptome changes associated with HT induced resistance. Pre-exposure to 35°C triggered intense callose deposits and cell wall fluorescence of the attacked epidermal cells, as well as, increased hydrogen peroxide (H2O2) and salicylic acid (SA) levels. Transcriptional changes due to combined stress (35°C+Mo) were largely overridden by pathogen infection in both backgrounds, suggesting that the plants tended to shift their response to the pathogen. However, significant differences in global gene expression patterns occurred between CO and LT in response to both single (35°C and Mo) and double stress (35°C+Mo). Collectively, our results suggest that rice lines carrying Pi54 respond to Mo by rapid induction of callose and H2O2, and that these resistance mechanisms are amplified at HT. The relative difference in disease severity between CO and LT at 28°C suggests that the genetic background of japonica rice facilitates the function of Pi54 more than the background of indica rice. The phenotypic plasticity and gene expression differences between CO and LT reveal the presence of intricate background specific molecular signatures that may potentially influence adaptation to plant stresses.


Assuntos
Resistência à Doença/genética , Resistência à Doença/fisiologia , Patrimônio Genético , Temperatura Alta , Magnaporthe/patogenicidade , Oryza/genética , Oryza/microbiologia , Parede Celular/metabolismo , Mudança Climática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Fenótipo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Estresse Fisiológico , Transcriptoma
5.
Funct Plant Biol ; 44(3): 358-371, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480570

RESUMO

Temperature changes have the potential to alter the incidence and severity of plant disease epidemics and pressures, as well as to reshape the co-evolutionary relationships between plants and pathogens. However, the molecular basis of temperature modulation of pathogenicity of plant pathogens is still unclear. Here, we studied the effect of temperature on biomass of Magnaporthe oryzae in planta using qPCR. Additionally, the transcriptomes of M. oryzae and rice were analysed using RNA-seq. Rice seedlings were exposed to 35°C and 28°C for 7 days before pathogen inoculation. Inoculated plants were kept in the dark at 28°C for 24h and later re-exposed to 35°C and 28°C for an additional 24h before sample collection. Plants grown and predisposed to 35°C prior to inoculation exhibited accelerated tissue necrosis compared with plants grown and inoculated at 28°C. In accordance with the disease severity observed on infected leaves, in planta fungal biomass was significantly higher at 35°C than 28°C. Moreover, M. oryzae exhibited increased expression levels of putative fungal effector genes in plants exposed to 35°C compared with plants exposed to 28°C. Collectively, this study revealed that temperature elevation could favour M. oryzae infection by compromising plant resistance and accelerating plant tissue colonisation with the pathogen.

6.
Funct Plant Biol ; 43(8): 709-726, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480498

RESUMO

Iron nutrition in plants is highly regulated in order to supply amounts sufficient for optimal growth while preventing deleterious effects. In response to iron deficiency, plants induce either reduction-based or chelation-based mechanisms to enhance iron uptake from the soil. Major physiological traits and genes involved in these mechanisms have been fairly well described in model plants like Arabidopsis thaliana (L. Heynh.) and rice (Oryza sativa L.). However, for rice, iron toxicity presents a major challenge worldwide and causes yield reductions because rice is widely cultivated in flooded soils. Nonetheless, rice employs different mechanisms of adaptation to iron-toxicity, which range from avoidance to tissue tolerance. The physiological and molecular bases of such mechanisms have not been fully investigated and their use in breeding for iron-toxicity tolerance remains limited. Efforts to precisely characterise iron-toxicity control mechanisms may help speed-up the development of tolerant rice varieties. Considering how far the understanding of iron dynamics in the soil and plants has progressed, we consider it valuable to exploit such knowledge to improve rice tolerance to iron toxicity. Here we present the mechanisms that regulate iron uptake from the rhizosphere to the plant tissues together with the possible regulators involved. In addition, a genetic model for iron-toxicity tolerance in rice, which hypothesises possible modulation of key genes involved in iron nutrition and regulation is presented. The possibility of incorporating such relevant regulators in breeding is also discussed.

7.
Phytopathology ; 105(8): 1137-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25822189

RESUMO

Rice blast, caused by Magnaporthe oryzae, is one of the emergent threats to rice production in East Africa (EA), where little is known about the population genetics and pathogenicity of this pathogen. We investigated the genetic diversity and mating type (MAT) distribution of 88 isolates of M. oryzae from EA and representative isolates from West Africa (WA) and the Philippines (Asia) using amplified fragment length polymorphism markers and mating-type-specific primer sets. In addition, the aggressiveness of each isolate was evaluated by inoculating on the susceptible Oryza sativa indica 'Co39', scoring the disease severity and calculating the disease progress. Hierarchical analysis of molecular variance revealed a low level of genetic differentiation at two levels (FST 0.12 and FCT 0.11). No evidence of population structure was found among the 65 isolates from EA, and gene flow among EA populations was high. Moreover, pairwise population differentiation (GST) in EA populations ranged from 0.03 to 0.04, suggesting that >96% of genetic variation is derived from within populations. However, the populations from Asia and WA were moderately differentiated from EA ones. The spatial analysis of principal coordinates and STRUCTURE revealed overlapping between individual M. oryzae isolates from EA, with limited distinctness according to the geographic origin. All the populations were clonal, given the positive and significant index of association (IA) and standardized index of association (rd), which indicates a significant (P<0.001) departure from panmixia (IA and rd=0). Both MAT1-1 and MAT1-2 were detected. However, MAT1-1 was more prevalent than MAT1-2. Pathogenicity analysis revealed variability in aggressiveness, suggesting a potential existence of different races. Our data suggest that either M. oryzae populations from EA could be distributed as a single genetic population or gene flow is exerting a significant influence, effectively swamping the action of selection. This is the first study of genetic differentiation of rice-infecting M. oryzae strains from EA, and may guide further studies on the pathogen as well as resistance breeding efforts.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Magnaporthe , Oryza/microbiologia , Doenças das Plantas/microbiologia , África Oriental , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Fluxo Gênico , Variação Genética , Genética Populacional , Magnaporthe/genética , Magnaporthe/patogenicidade , Magnaporthe/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA