RESUMO
INTRODUCTION: Malaria and soil-transmitted helminth (STH) co-infection is an important parasitic infection affecting populations in co-endemic countries including Equatorial Guinea. To date, the health impact of STH and malaria co-infection is inconclusive. The current study aimed to report the malaria and STH infection epidemiology in the continental region of Equatorial Guinea. METHODS: We performed a cross-sectional study between October 2020 and January 2021 in the Bata district of Equatorial Guinea. Participants aged 1-9 years, 10-17 years and above 18 were recruited. Fresh venous blood was collected for malaria testing via mRDTs and light microscopy. Stool specimens were collected, and the Kato-Katz technique was used to detect the presence of Ascaris lumbricoides, Trichuris trichiura, hookworm spp. and intestinal Schistosoma eggs. RESULTS: A total of 402 participants were included in this study. An amount of 44.3% of them lived in urban areas, and only 51.9% of them reported having bed nets. Malaria infections were detected in 34.8% of the participants, while 50% of malaria infections were reported in children aged 10-17 years. Females had a lower prevalence of malaria (28.8%) compared with males (41.7%). Children of 1-9 years carried more gametocytes compared with other age groups. An amount of 49.3% of the participants infected with T. trichiura had malaria parasites compared with those infected with A. lumbricoides (39.6%) or both (46.8%). CONCLUSIONS: The overlapping problem of STH and malaria is neglected in Bata. The current study forces the government and other stakeholders involved in the fight against malaria and STH to consider a combined control program strategy for both parasitic infections in Equatorial Guinea.
RESUMO
The need for tools that facilitate rapid detection and continuous monitoring of SARS-CoV-2 variants of concern (VOCs) is greater than ever, as these variants are more transmissible and therefore increase the pressure of COVID-19 on healthcare systems. To address this demand, we aimed at developing and evaluating a robust and fast diagnostic approach for the identification of SARS-CoV-2 VOC-associated spike gene mutations. Our diagnostic assays detect the E484K and N501Y single-nucleotide polymorphisms (SNPs) as well as a spike gene deletion (HV69/70) and can be run on standard laboratory equipment or on the portable rapid diagnostic technology platform peakPCR. The assays achieved excellent diagnostic performance when tested with RNA extracted from culture-derived SARS-CoV-2 VOC lineages and clinical samples collected in Equatorial Guinea, Central-West Africa. Simplicity of usage and the relatively low cost are advantages that make our approach well suitable for decentralized and rapid testing, especially in resource-limited settings.