Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur J Hum Genet ; 31(7): 784-792, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012328

RESUMO

Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients.


Assuntos
Doença de Moyamoya , Neurofibromatose 1 , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/genética , Acidente Vascular Cerebral/genética , Mutação de Sentido Incorreto , Testes Genéticos , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases/genética
2.
Mol Genet Genomic Med ; 11(5): e2148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785910

RESUMO

BACKGROUND: As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS: Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS: A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION: The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.


Assuntos
Encefalopatias , Genoma Humano , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Sequenciamento Completo do Genoma
3.
Eur J Med Genet ; 66(1): 104669, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379434

RESUMO

Only few copy number variants at chromosome 19p13.11 have been reported, thus associated clinical information is scarce. Proximal to these copy number losses, we now identified deletions in five unrelated individuals with neurodevelopmental disorders. They presented with psychomotor delay as well as behavioral and sleeping disorders, while complex cardiovascular, skeletal, and various other malformations were more variable. Dysmorphic features were rather unspecific and not considered as a recognizable gestalt. Neither of the analyzed parents carried their offsprings' deletions, indicating de novo occurrence. The deletion sizes ranged between 0.7 and 5.2 Mb, were located between 18 and 24 megabases from the telomere, and contained a variable number of protein-coding genes (n = 25-68). Although not all microdeletions shared a common region, the smallest common overlap of some of the deletions provided interesting insights in the chromosomal region 19p13.11p12. Diligent literature review using OMIM and Pubmed did not identify a satisfying candidate gene for neurodevelopmental disorders. In the literature, a de novo in-frame deletion in MAU2 was considered pathogenic in an individual with Cornelia de Lange syndrome. Therefore, the clinical differential diagnosis of this latter syndrome in one individual and the encompassment of MAU2 in three individuals' deletions suggest clinical and genetic overlap with this specific syndrome. Three of the four here reported individuals with deletion encompassing GDF1 had different congenital heart defects, suggesting that this gene's haploinsufficiency might contribute to the cardiovascular phenotype, however, with reduced penetrance. Our findings indicate an association of microdeletions at 19p13.11/ 19p13.11p12 with neurodevelopmental disorders, variable symptoms, and malformations, and delineate the phenotypic spectrum of deletions within this genomic region.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 19 , Transtornos do Neurodesenvolvimento , Humanos , Cromossomos Humanos Par 19/genética , Síndrome de Cornélia de Lange/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Telômero/genética
4.
Eur J Med Genet ; 65(12): 104628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182037

RESUMO

POLA1 encodes a subunit of the DNA polymerase alpha, a key enzyme for the initiation of DNA synthesis. In males, hemizygous hypomorphic variants in POLA1 have been identified as the cause of X-linked pigmentary reticulate disorder (XLPDR) and a novel X-linked neurodevelopmental disorder termed Van Esch-O'Driscoll syndrome (VEODS), while female carriers have been reported to be healthy. Nullisomy for POLA1 was speculated to be lethal due to its crucial function, while the effect of loss of one allele in females remained unknown. Here, we report on a three-generation family harboring a deletion of POLA1 in females showing subfertility as the only phenotype. Our findings show that heterozygous deletions or truncating variants in females with skewed X inactivation do not cause VEODS and support the hypothesis of very early embryonic lethality in males with POLA1 nullisomy.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Deficiência Intelectual , Masculino , Feminino , Humanos , DNA Polimerase I/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Genes Ligados ao Cromossomo X , Heterozigoto , Deficiência Intelectual/genética , Fertilidade
5.
NPJ Genom Med ; 7(1): 45, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906228

RESUMO

The magnitude of clinical utility of preconception expanded carrier screening (ECS) concerning its potential to reduce the risk of affected offspring is unknown. Since neurodevelopmental disorders (NDDs) in their offspring is a major concern of parents-to-be, we addressed the question of residual risk by assessing the risk-reduction potential for NDDs in a retrospective study investigating ECS with different criteria for gene selection and definition of pathogenicity. We used exome sequencing data from 700 parents of children with NDDs and blindly screened for carrier-alleles in up to 3046 recessive/X-linked genes. Depending on variant pathogenicity thresholds and gene content, NDD-risk-reduction potential was up to 43.5% in consanguineous, and 5.1% in nonconsanguineous couples. The risk-reduction-potential was compromised by underestimation of pathogenicity of missense variants (false-negative-rate 4.6%), inherited copy-number variants and compound heterozygosity of one inherited and one de novo variant (0.9% each). Adherence to the ACMG recommendations of restricting ECS to high-frequency genes in nonconsanguineous couples would more than halve the detectable inherited NDD-risk. Thus, for optimized clinical utility of ECS, screening in recessive/X-linked genes regardless of their frequency (ACMG Tier-4) and sensible pathogenicity thresholds should be considered for all couples seeking ECS.

6.
Mol Genet Genomic Med ; 8(10): e1409, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748564

RESUMO

BACKGROUND: A minority of breast cancer (BC) patients suffer from severe reaction to adjuvant radiotherapy (RT). Although deficient DNA double-strand break repair is considered the main basis for the reactions, pretreatment identification of high-risk patients has been challenging. METHODS: To retrospectively determine the etiology of severe local reaction to RT in a 39-year-old woman with BC, we performed next-generation sequencing followed by further clinical and functional studies. RESULTS: We found a -4 intronic variant (c.2251-4A>G) in trans with a synonymous (c.3576G>A) variant affecting the ATM DNA-repair gene (NG_009830.1, NM_000051.3) which is linked to autosomal recessive ataxia-telangiectasia (A-T). We verified abnormal transcripts resulting from both variants, next to a minor wild-type transcript leading to a residual ATM kinase activity and genomic instability. Follow-up examination of the patient revealed no classic sign of A-T but previously unnoticed head dystonia and mild dysarthria, a family history of BC and late-onset ataxia segregating with the variants. Additionally, her serum level of alpha-fetoprotein (AFP) was elevated similar to A-T patients. CONCLUSION: Considering the variable presentations of A-T and devastating impact of severe reactions to RT, we suggest a routine measurement of AFP in RT-candidate BC patients followed by next-generation sequencing with special attention to non-canonical splice site and synonymous variants in ATM.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/genética , Neoplasias da Mama/radioterapia , Mutação em Linhagem Germinativa , Lesões por Radiação/genética , Adulto , Ataxia Telangiectasia/etiologia , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , Feminino , Predisposição Genética para Doença , Testes Genéticos , Instabilidade Genômica , Humanos , Linhagem , Splicing de RNA , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Radioterapia Adjuvante/efeitos adversos , alfa-Fetoproteínas/metabolismo
7.
Eur J Obstet Gynecol Reprod Biol ; 252: 19-29, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32619881

RESUMO

OBJECTIVE: Non-invasive prenatal testing by targeted or genome-wide copy number profiling (cnNIPT) has the potential to outperform standard NIPT targeting the common trisomies 13, 18, and 21, only. Nevertheless, prospective results and outcome data on cnNIPT are still scarce and there is increasing evidence for maternal copy number variants (CNVs) interfering with results of both, standard and cnNIPT. STUDY DESIGN: We assessed the performance of cnNIPT in 3053 prospective and 116 retrospective cases with special consideration of maternal CNVs in singleton and multiple gestational pregnancies at any risk, as well as comprehensive follow-up. RESULTS: A result was achieved in 2998 (98.2%) of total prospective cases (89.2% analyzed genome-wide). Confirmed fetal chromosomal abnormalities were detected in 45 (1.5%) cases, of which five (11%) would have remained undetected in standard NIPTs. Additionally, we observed 4 likely fetal trisomies without follow-up and a likely phenotype associated placental partial trisomy 16. Moreover, we observed clinically relevant confirmed maternal CNVs in 9 (0.3%) cases and likely maternal clonal hematopoiesis in 3 (0.1%). For common fetal trisomies we prospectively observed a very high sensitivity (100% [95% CI: 91.96-100%]) and specificity (>99.9% [95% CI: 99.8-100%]), and positive predictive value (PPV) (97.8% [95% CI: 86.1-99.7%]), but our retrospective control cases demonstrated that due to cases of fetal restricted mosaicism the true sensitivity of NIPT is lower. After showing that 97.3% of small CNVs prospectively observed in 8.3% of genome-wide tests were mostly benign maternal variants, sensitivity (75.0% [95% CI: 19.4%-99.4%]), specificity (99.7% [99.5%-99.9%]) and PPV (30.0% [14.5%-52.1%]) for relevant fetal CNVs were relatively high, too. Maternal autoimmune disorders and medication, such as dalteparin, seem to impair assay quality. CONCLUSION: When maternal CNVs are recognized as such, cnNIPT showed a very high sensitivity, specificity and PPV for common trisomies in single and multiple pregnancies at any risk and very good values genome-wide. We found that the resolution for segmental aberrations is generally comparable to standard karyotyping, and exceeds the latter if the fetal fraction is above 10%, which allows detection of the 2.5 Mb 22q11.2 microdeletion associated with the velocardiofacial syndrome, even if the mother is not a carrier.


Assuntos
Transtornos Cromossômicos , Gravidez Múltipla , Diagnóstico Pré-Natal , Feminino , Humanos , Gravidez , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco
8.
J Neural Transm (Vienna) ; 127(1): 81-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838600

RESUMO

Copy-number variants (CNVs), in particular rare, small and large ones (< 1% frequency) and those encompassing brain-related genes, have been shown to be associated with neurodevelopmental disorders like autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and intellectual disability (ID). However, the vast majority of CNV findings lack specificity with respect to autistic or developmental-delay phenotypes. Therefore, the aim of the study was to investigate the size and frequency of CNVs in high-functioning ASD (HFA) without ID compared with a random population sample and with published findings in ASD and ID. To investigate the role of CNVs for the "core symptoms" of high-functioning autism, we included in the present exploratory study only patients with HFA without ID. The aim was to test whether HFA have similar large rare (> 1 Mb) CNVs as reported in ASD and ID. We performed high-resolution chromosomal microarray analysis in 108 children and adolescents with HFA without ID. There was no significant difference in the overall number of rare CNVs compared to 124 random population samples. However, patients with HFA carried significantly more frequently CNVs containing brain-related genes. Surprisingly, six HFA patients carried very large CNVs known to be typically present in ID. Our findings provide new evidence that not only small, but also large CNVs affecting several key genes contribute to the genetic etiology/risk of HFA without affecting their intellectual ability.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Análise em Microsséries
9.
Am J Med Genet B Neuropsychiatr Genet ; 183(2): 140-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31742845

RESUMO

Schizophrenia is a complex and chronic neuropsychiatric disorder, with a heritability of around 60-80%. Large (>100 kb) rare (<1%) copy number variants (CNVs) occur more frequently in schizophrenia patients compared to controls. Currently, there are no studies reporting genome-wide CNVs in clinical high risk for psychosis (CHR-P) individuals. The aim of this study was to investigate the role of rare genome-wide CNVs in 84 CHR-P individuals and 124 presumably healthy controls. There were no significant differences in all rare CNV frequencies and sizes between CHR-P individuals and controls. However, brain-related CNVs and brain-related deletions were significantly more frequent in CHR-P individuals than controls. In CHR-P individuals, significant associations were found between brain-related CNV carriers and attenuated positive symptoms syndrome or cognitive disturbances (OR = 3.07, p = .0286). Brain-related CNV carriers experienced significantly higher negative symptoms (p = .0047), higher depressive symptoms (p = .0175), and higher disturbances of self and surroundings (p = .0029) than noncarriers. Furthermore, enrichment analysis of genes was performed in the regions of rare CNVs using three independent methods, which confirmed significant clustering of predefined genes involved in synaptic/brain-related functional pathways in CHR-P individuals. These results suggest that rare CNVs might affect synaptic/brain-related functional pathways in CHR-P individuals.


Assuntos
Variações do Número de Cópias de DNA/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Adulto , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Transtornos Psicóticos/metabolismo , Fatores de Risco
10.
Genet Med ; 21(9): 2043-2058, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842647

RESUMO

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma , Via de Sinalização Wnt
11.
Eur J Hum Genet ; 27(3): 408-421, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552426

RESUMO

Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia/genética , Sequenciamento do Exoma/métodos , Taxa de Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/diagnóstico , Exoma , Feminino , Genes Recessivos , Humanos , Lactente , Masculino
12.
Eur J Hum Genet ; 26(2): 197-209, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29321670

RESUMO

Acrocallosal syndrome (ACLS) is an autosomal recessive neurodevelopmental disorder caused by KIF7 defects and belongs to the heterogeneous group of ciliopathies related to Joubert syndrome (JBTS). While ACLS is characterized by macrocephaly, prominent forehead, depressed nasal bridge, and hypertelorism, facial dysmorphism has not been emphasized in JBTS cohorts with molecular diagnosis. To evaluate the specificity and etiology of ACLS craniofacial features, we performed whole exome or targeted Sanger sequencing in patients with the aforementioned overlapping craniofacial appearance but variable additional ciliopathy features followed by functional studies. We found (likely) pathogenic variants of KIF7 in 5 out of 9 families, including the original ACLS patients, and delineated 1000 to 4000-year-old Swiss founder alleles. Three of the remaining families had (likely) pathogenic variants in the JBTS gene C5orf42, and one patient had a novel de novo frameshift variant in SHH known to cause autosomal dominant holoprosencephaly. In accordance with the patients' craniofacial anomalies, we showed facial midline widening after silencing of C5orf42 in chicken embryos. We further supported the link between KIF7, SHH, and C5orf42 by demonstrating abnormal primary cilia and diminished response to a SHH agonist in fibroblasts of C5orf42-mutated patients, as well as axonal pathfinding errors in C5orf42-silenced chicken embryos similar to those observed after perturbation of Shh signaling. Our findings, therefore, suggest that beside the neurodevelopmental features, macrocephaly and facial widening are likely more general signs of disturbed SHH signaling. Nevertheless, long-term follow-up revealed that C5orf42-mutated patients showed catch-up development and fainting of facial features contrary to KIF7-mutated patients.


Assuntos
Anormalidades Múltiplas/genética , Síndrome Acrocalosal/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Proteínas Hedgehog/metabolismo , Doenças Renais Císticas/genética , Cinesinas/genética , Proteínas de Membrana/genética , Retina/anormalidades , Anormalidades Múltiplas/patologia , Síndrome Acrocalosal/patologia , Adulto , Animais , Células Cultivadas , Cerebelo/patologia , Embrião de Galinha , Criança , Anormalidades do Olho/patologia , Feminino , Humanos , Doenças Renais Císticas/patologia , Cinesinas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação , Retina/patologia , Transdução de Sinais
13.
BMC Med Genomics ; 10(1): 68, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179725

RESUMO

BACKGROUND: Obsessive-Compulsive Disorder (OCD) is a common and chronic disorder in which a person has uncontrollable, reoccurring thoughts and behaviours. It is a complex genetic condition and, in case of early onset (EO), the patients manifest a more severe phenotype, and an increased heritability. Large (>500 kb) copy number variations (CNVs) previously associated with autism and schizophrenia have been reported in OCD. Recently, rare CNVs smaller than 500 kb overlapping risk loci for other neurodevelopmental conditions have also been reported in OCD, stressing the importance of examining CNVs of any size range. The aim of this study was to further investigate the role of rare and small CNVs in the aetiology of EO-OCD. METHODS: We performed high-resolution chromosomal microarray analysis in 121 paediatric OCD patients and in 124 random controls to identify rare CNVs (>50 kb) which might contribute to EO-OCD. RESULTS: The frequencies and the size of the observed rare CNVs in the patients did not differ from the controls. However, we observed a significantly higher frequency of rare CNVs affecting brain related genes, especially deletions, in the patients (OR = 1.98, 95% CI 1.02-3.84; OR = 3.61, 95% CI 1.14-11.41, respectively). Similarly, enrichment-analysis of CNVs gene content, performed with three independent methods, confirmed significant clustering of predefined genes involved in synaptic/brain related functional pathways in the patients but not in the controls. In two patients we detected de-novo CNVs encompassing genes previously associated with different neurodevelopmental disorders (NRXN1, ANKS1B, UHRF1BP1). CONCLUSIONS: Our results further strengthen the role of small rare CNVs, particularly deletions, as susceptibility factors for paediatric OCD.


Assuntos
Transtorno Obsessivo-Compulsivo/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Adolescente , Encéfalo/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular Neuronais/genética , Criança , Cromossomos/genética , Variações do Número de Cópias de DNA , Deleção de Genes , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa , Transtorno Obsessivo-Compulsivo/genética , Polimorfismo de Nucleotídeo Único , Ubiquitina-Proteína Ligases
14.
Mol Syndromol ; 8(5): 266-271, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878611

RESUMO

Chromosomal mosaicism, which represents a diagnostic challenge for detection and interpretation, has been described in several genetic conditions. It can contribute to a large phenotypic variation in diseases. At analysis of a well-characterized cohort of 714 patients with neurodevelopmental disorders (NDDs) of unknown etiology using a high-resolution chromosomal microarray platform, we found 2 cases (0.28%) of low-level mosaicism and defined a previously detected extra chromosome in a third patient. Two of the cases were mosaics for segmental imbalances (a partial trisomy 3q26.1q27.3 and a partial monosomy 18q21.2qter with 14.6 and 20% mosaic ratios in lymphocytes, respectively), and 1 was a mosaic for an entire chromosome (trisomy 14, mosaic ratio 20%). Our diagnostic yield is in line with the ratios previously published in patients with intellectual disability. Notably, the partial trisomy 3q26.1q27.3 case is an example of a rare and unusual class of a rearranged neocentric ring chromosome, which can neither be categorized in class I, nor in class II of such rearrangements. Our cases further elucidate the phenotypes related to the aberrations of the specific chromosome segments observed and underline the important role of low-level mosaics in the pathogenesis of NDDs of unknown etiology even in the absence of clinical signs of mosaicism.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28215395

RESUMO

In prenatal diagnosis, chromosomal microarray (CMA) has not yet fully replaced conventional karyotyping but has rapidly become the recommended test in pregnancies with ultrasound abnormalities. In this review, we provide an overview of the published data concerning this technology and the controversies concerning its use in the prenatal setting. There is abundant evidence indicating the added detection of pathogenic abnormalities with CMA in comparison to the traditional karyotyping, especially in fetuses with multiple or isolated ultrasound abnormalities such as congenital heart disease, increased nuchal translucency, or oral cleft. On the other hand, there is also a risk to detect variants of unknown significance, late-onset disorders, and variants in susceptibility loci. However, it has been shown that pregnant couples tend to prefer a maximum of information about the health of their unborn child. Taken together, CMA has considerable diagnostic and prognostic values during pregnancy and should therefore be the test of choice.


Assuntos
Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Análise em Microsséries , Diagnóstico Pré-Natal/métodos , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Feminino , Feto , Cardiopatias Congênitas , Humanos , Cariotipagem , Medição da Translucência Nucal , Gravidez
17.
Eur J Obstet Gynecol Reprod Biol ; 200: 72-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26989803

RESUMO

OBJECTIVE: Non-invasive prenatal testing (NIPT) is increasingly being used in prenatal aneuploidy screening. The objective of this study was to assess the positive predictive value in our cohort of 68 cases with positive NIPT result. In addition, we wondered if the use of NIPT in cases with ultrasound abnormalities is appropriate, given the limited number of chromosomes investigated. DESIGN: We performed confirmative invasive testing using karyotyping, fluorescence in situ hybridization (FISH) and/or high-resolution chromosomal microarray analysis. RESULTS: In line with the published data, the positive NIPT result was confirmed in 64.7% of cases. Inconclusive and negative NIPT results followed by cytogenetically pathologic findings were encountered in three and in five cases, respectively. Four of the five fetuses with negative NIPT but pathologic cytogenetic findings were born with several malformations and diagnosed right after birth with severe genetic conditions. Of note, in all of those four cases, NIPT was offered despite the finding of major fetal ultrasound abnormalities and despite the fact that the family would not have opposed invasive testing or pregnancy termination. CONCLUSION: More education of health care providers and caution in counseling and interpretation of test results are needed in order to meet the challenges that this new test, which enriches our diagnostic options in prenatal testing, poses.


Assuntos
Aconselhamento Genético , Gravidez de Alto Risco , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Aneuploidia , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Análise Citogenética , Síndrome de Down/diagnóstico , Feminino , Retardo do Crescimento Fetal/diagnóstico , Idade Gestacional , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariotipagem , Idade Materna , Medição da Translucência Nucal , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Trissomia
18.
J Med Genet ; 52(12): 804-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424144

RESUMO

BACKGROUND: The 17q21.31 deletion syndrome phenotype can be caused by either chromosome deletions or point mutations in the KANSL1 gene. To date, about 60 subjects with chromosome deletion and 4 subjects with point mutation in KANSL1 have been reported. Prevalence of chromosome deletions compared with point mutations, genotype-phenotype correlations and phenotypic variability have yet to be fully clarified. METHODS: We report genotype-phenotype correlations in 27 novel subjects with 17q21.31 deletion and in 5 subjects with KANSL1 point mutation, 3 of whom were not previously reported. RESULTS: The prevalence of chromosome deletion and KANSL1 mutation was 83% and 17%, respectively. All patients had similar clinical features, with the exception of macrocephaly, which was detected in 24% of patients with the deletion and 60% of those with the point mutation, and congenital heart disease, which was limited to 35% of patients with the deletion. A remarkable phenotypic variability was observed in both categories, mainly with respect to the severity of ID. Cognitive function was within normal parameters in one patient in each group. Craniosynostosis, subependymal heterotopia and optic nerve hypoplasia represent new component manifestations. CONCLUSIONS: In KANSL1 haploinsufficiency syndrome, chromosome deletions are greatly prevalent compared with KANSL1 mutations. The latter are sufficient in causing the full clinical phenotype. The degree of intellectual disability (ID) appears to be milder than expected in a considerable number of subjects with either chromosome deletion or KANSL1 mutation. Striking clinical criteria for enrolling patients into KANSL1 analysis include speech delay, distinctive facial dysmorphism, macrocephaly and friendly behaviour.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Nucleares/genética , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Anormalidades Craniofaciais/genética , Feminino , Retardo do Crescimento Fetal/genética , Estudos de Associação Genética , Haploinsuficiência , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Convulsões/genética , Índice de Gravidade de Doença , Síndrome , Adulto Jovem
19.
J Med Genet ; 51(10): 677-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25106414

RESUMO

BACKGROUND: Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500 kb has not been well elucidated in a clinical context. METHODS: By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1-500 kb in a cohort of 714 patients with undiagnosed NDDs. RESULTS: We detected 96 rare CNVs <500 kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130 kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear. CONCLUSIONS: These results verify the diagnostic relevance of genome-wide rare CNVs <500 kb, which were found pathogenic in ∼2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions.


Assuntos
Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Adulto Jovem
20.
Prenat Diagn ; 34(6): 525-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24919595

RESUMO

OBJECTIVE: The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. METHODS: We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. RESULTS: High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. CONCLUSION: High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance.


Assuntos
Aberrações Cromossômicas , Análise em Microsséries/métodos , Diagnóstico Pré-Natal/métodos , Adulto , Células Cultivadas , Cromossomos Humanos , Estudos de Coortes , Feminino , Humanos , Cariotipagem/métodos , Idade Materna , Valor Preditivo dos Testes , Gravidez , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA