Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2229, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076491

RESUMO

Expression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an "integrative prior" for Bayesian statistical fine-mapping. The use of an integrative prior resulted in higher resolution eQTLs illustrated by (1) smaller numbers of variants in credible sets with greater confidence, (2) increased enrichment of partitioned heritability for GWAS of two kidney traits, (3) an increased number of variants colocalized with the GWAS loci, and (4) enrichment of computationally predicted functional regulatory variants. A subset of variants and genes were validated experimentally in vitro and using a Drosophila nephrocyte model. More broadly, this study demonstrates that tissue-specific eQTL maps informed by single-nucleus open chromatin data have enhanced utility for diverse downstream analyses.


Assuntos
Estudo de Associação Genômica Ampla , Nefropatias , Humanos , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Nefropatias/genética , Genômica , Cromatina/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
2.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414417

RESUMO

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
3.
Genet Med ; 24(2): 307-318, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906515

RESUMO

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Alelos , Exoma/genética , Humanos , Rim/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral
4.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523862

RESUMO

Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Nefropatias , Síndrome Nefrótica , Podócitos , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Forminas/genética , Humanos , Nefropatias/metabolismo , Camundongos , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Podócitos/metabolismo
5.
Kidney Int Rep ; 6(2): 460-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615071

RESUMO

INTRODUCTION: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways. METHODS: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS. RESULTS: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including SYNPO. We show that loss-of-function of SYNPO leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation. CONCLUSION: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for SYNPO as a novel potential monogenic cause of NS.

6.
Kidney Int Rep ; 6(2): 472-483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615072

RESUMO

INTRODUCTION: Most of the approximately 60 genes that if mutated cause steroid-resistant nephrotic syndrome (SRNS) are highly expressed in the glomerular podocyte, rendering SRNS a "podocytopathy." METHODS: We performed whole-exome sequencing (WES) in 1200 nephrotic syndrome (NS) patients. RESULTS: We discovered homozygous truncating and homozygous missense mutation in SYNPO2 (synaptopodin-2) (p.Lys1124∗ and p.Ala1134Thr) in 2 patients with childhood-onset NS. We found SYNPO2 expression in both podocytes and mesangial cells; however, notably, immunofluorescence staining of adult human and rat kidney cryosections indicated that SYNPO2 is localized mainly in mesangial cells. Subcellular localization studies reveal that in these cells SYNPO2 partially co-localizes with α-actinin and filamin A-containing F-actin filaments. Upon transfection in mesangial cells or podocytes, EGFP-SYNPO2 co-localized with α-actinin-4, which gene is mutated in autosomal dominant SRNS in humans. SYNPO2 overexpression increases mesangial cell migration rate (MMR), whereas shRNA knockdown reduces MMR. Decreased MMR was rescued by transfection of wild-type mouse Synpo2 cDNA but only partially by cDNA representing mutations from the NS patients. The increased mesangial cell migration rate (MMR) by SYNPO2 overexpression was inhibited by ARP complex inhibitor CK666. SYNPO2 shRNA knockdown in podocytes decreased active Rac1, which was rescued by transfection of wild-type SYNPO2 cDNA but not by cDNA representing any of the 2 mutant variants. CONCLUSION: We show that SYNPO2 variants may lead to Rac1-ARP3 dysregulation, and may play a role in the pathogenesis of nephrotic syndrome.

7.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593823

RESUMO

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Nefrose/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Pré-Escolar , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Síndrome Nefrótica/genética , Podócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Pronefro/embriologia , Pronefro/metabolismo , Estabilidade Proteica , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Xenopus laevis/embriologia , Xenopus laevis/genética , Dedos de Zinco/genética
8.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508234

RESUMO

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Assuntos
Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glomerulosclerose Segmentar e Focal/genética , Espaço Intranuclear/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Códon sem Sentido , Deficiências do Desenvolvimento/metabolismo , Epilepsia/metabolismo , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Podócitos/metabolismo , Sequenciamento do Exoma
9.
Nephrol Dial Transplant ; 36(2): 237-246, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097957

RESUMO

BACKGROUND: An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis. METHODS: In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD. RESULTS: We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient's mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity. CONCLUSION: Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.


Assuntos
Transição Epitelial-Mesenquimal , Nefropatias/etiologia , Mutação , Proteínas Repressoras/genética , Animais , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Knockout , Ratos , Proteínas Repressoras/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma
10.
Am J Hum Genet ; 107(6): 1113-1128, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232676

RESUMO

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.


Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , Xenopus
11.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
12.
J Am Soc Nephrol ; 30(12): 2338-2353, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732614

RESUMO

BACKGROUND: Mutations in about 50 genes have been identified as monogenic causes of nephrotic syndrome, a frequent cause of CKD. These genes delineated the pathogenetic pathways and rendered significant insight into podocyte biology. METHODS: We used whole-exome sequencing to identify novel monogenic causes of steroid-resistant nephrotic syndrome (SRNS). We analyzed the functional significance of an SRNS-associated gene in vitro and in podocyte-like Drosophila nephrocytes. RESULTS: We identified hemizygous missense mutations in the gene TBC1D8B in five families with nephrotic syndrome. Coimmunoprecipitation assays indicated interactions between TBC1D8B and active forms of RAB11. Silencing TBC1D8B in HEK293T cells increased basal autophagy and exocytosis, two cellular functions that are independently regulated by RAB11. This suggests that TBC1D8B plays a regulatory role by inhibiting endogenous RAB11. Coimmunoprecipitation assays showed TBC1D8B also interacts with the slit diaphragm protein nephrin, and colocalizes with it in immortalized cell lines. Overexpressed murine Tbc1d8b with patient-derived mutations had lower affinity for endogenous RAB11 and nephrin compared with wild-type Tbc1d8b protein. Knockdown of Tbc1d8b in Drosophila impaired function of the podocyte-like nephrocytes, and caused mistrafficking of Sns, the Drosophila ortholog of nephrin. Expression of Rab11 RNAi in nephrocytes entailed defective delivery of slit diaphragm protein to the membrane, whereas RAB11 overexpression revealed a partial phenotypic overlap to Tbc1d8b loss of function. CONCLUSIONS: Novel mutations in TBC1D8B are monogenic causes of SRNS. This gene inhibits RAB11. Our findings suggest that RAB11-dependent vesicular nephrin trafficking plays a role in the pathogenesis of nephrotic syndrome.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Mutação de Sentido Incorreto , Síndrome Nefrótica/genética , Podócitos/metabolismo , Vesículas Transportadoras/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Linhagem Celular Transformada , Cães , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Exocitose , Inativação Gênica , Células HEK293 , Humanos , Imunoglobulinas/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Síndrome Nefrótica/metabolismo , Fenótipo , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA