Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 110(6): 1069-1079, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653233

RESUMO

The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.


Assuntos
Malária , Humanos , Malária/prevenção & controle , Malária/tratamento farmacológico , Quênia/epidemiologia , Antimaláricos/uso terapêutico , Estados Unidos , Política de Saúde , Pesquisa Biomédica , United States Department of Defense , Resistência a Medicamentos
2.
Int J Infect Dis ; 132: 17-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37061211

RESUMO

OBJECTIVES: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs). METHODS: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs. RESULTS: Day 0 samples had 71.1% (116/163) single P. falciparum infections and 28.2% (46/163) coinfections. A total of 54.0% (88/163) of individuals tested positive for Plasmodium at least once between days 7-42. A total of 19.3% (17/88) of individuals with recurrent infections were infected with a different Plasmodium species than observed at day 0, with 76.5% (13/17) of these "hidden" infections appearing after clearing P. falciparum present at day 0. Artesunate-mefloquine (16.4 hours) and dihydroartemisinin-piperaquine (17.6 hours) had increased clearance rates over artemether-lumefantrine (21.0 hours). Dihydroartemisinin-piperaquine exhibited the longest duration of reinfection prophylaxis. Cure rates were comparable across each species composition. CONCLUSION: No differences in clearance rates were found depending on whether the infection contained species other than P. falciparum. Significantly longer durations of protection were observed for individuals treated with dihydroartemisinin-piperaquine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Humanos , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Quênia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum , Quinolinas/uso terapêutico , Reinfecção , Estudos Retrospectivos
3.
Clin Infect Dis ; 76(4): 704-712, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35767269

RESUMO

BACKGROUND: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population. METHODS: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling. Malaria was diagnosed by microscopy and molecular methods. Transmission potential in gametocytemic participants was assessed using direct skin and/or membrane mosquito feeding assays, then treated with artemether-lumefantrine. Study variables were assessed using mixed-effects generalized linear models. RESULTS: Asexual and sexual parasite data were collected from 3792 participant visits, with 903 linked with feeding assays. Univariate analysis revealed that the 6-11-year-old age group was at higher risk of harboring asexual and sexual infections than those <6 years old (odds ratio [OR] 1.68, P < .001; and OR 1.81, P < .001), respectively. Participants with submicroscopic parasitemia were at a lower risk of gametocytemia compared with microscopic parasitemia (OR 0.04, P < .001), but they transmitted at a significantly higher rate (OR 2.00, P = .002). A large proportion of the study population who were infected at least once remained infected (despite treatment) with asexual (71.7%, 291/406) or sexual (37.4%, 152/406) parasites. 88.6% (365/412) of feeding assays conducted in individuals who failed treatment the previous month resulted in transmissions. CONCLUSIONS: Individuals with asymptomatic infection sustain the transmission cycle, with the 6-11-year age group serving as an important reservoir. The high rates of artemether-lumefantrine treatment failures suggest surveillance programs using molecular methods need to be expanded for accurate monitoring and evaluation of treatment outcomes.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Animais , Humanos , Criança , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Plasmodium falciparum , Quênia/epidemiologia , Parasitemia/tratamento farmacológico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico
5.
Front Med (Lausanne) ; 9: 991807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314027

RESUMO

The impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 Plasmodium antigens were significantly associated with ASMQ treatment outcome but not AL. We used machine learning to develop predictive models of treatment outcome based on the immunoprofile data. The models predict treatment outcome for ASMQ with high (72-85%) accuracy, but could not predict treatment outcome for AL. This divergent treatment outcome suggests that humoral immunity may synergize with the longer mefloquine half-life to provide a prophylactic effect at 28-42 days post-treatment, which was further supported by simulated pharmacokinetic profiling. Our computational approach and modeling revealed the synergistic effect of pre-existing immunity in patients with drug combination that has an extended efficacy on providing long term treatment efficacy of ASMQ.

6.
Sci Rep ; 5: 8308, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655315

RESUMO

Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Dosagem de Genes , Loci Gênicos , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Frequência do Gene , Humanos , Concentração Inibidora 50 , Quênia , Malária Falciparum/tratamento farmacológico , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA