Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 721674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589102

RESUMO

Verticillium dahliae is a particularly notorious vascular wilt pathogen of tomato and poses a reoccurring challenge to crop protection as limited qualitative resistance is available. Therefore, alternative approaches for crop protection are pursued. One such strategy is the impairment of disease susceptibility (S) genes, which are plant genes targeted by pathogens to promote disease development. In Arabidopsis and cotton, the Walls Are Thin 1 (WAT1) gene has shown to be a S gene for V. dahliae. In this study, we identified the tomato WAT1 homolog Solyc04g080940 (SlWAT1). Transient and stable silencing of SlWAT1, based on virus-induced gene silencing (VIGS) and RNAi, respectively, did not consistently lead to reduced V. dahliae susceptibility in tomato. However, CRISPR-Cas9 tomato mutant lines carrying targeted deletions in SlWAT1 showed significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol). Thus, disabling the tomato WAT1 gene resulted in broad-spectrum resistance to various vascular pathogens in tomato. Unfortunately these tomato CRISPR mutant lines suffered from severe growth defects. In order to overcome the pleiotropic effect caused by the impairment of the tomato WAT1 gene, future efforts should be devoted to identifying tomato SlWAT1 mutant alleles that do not negatively impact tomato growth and development.

2.
Plant J ; 105(4): 855-869, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220113

RESUMO

Plants regulate their reproductive cycles under the influence of environmental cues, such as day length, temperature and water availability. In Solanum tuberosum (potato), vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR 1 (StCDF1) was shown to regulate tuberization. We now show that StCDF1, together with a long non-coding RNA (lncRNA) counterpart, named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water-limiting conditions. Conversely, elevated expression of StFLORE, both by the overexpression of StFLORE or by the downregulation of StCDF1, results in an increased tolerance to drought through reducing water loss. Although StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family, as well as StCO genes, through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.


Assuntos
Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Solanum tuberosum/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Desidratação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Tubérculos/metabolismo , Tubérculos/fisiologia , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Antissenso/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/genética , RNA de Plantas/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
3.
BMC Plant Biol ; 20(1): 73, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054439

RESUMO

BACKGROUND: Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS: Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION: Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Tylenchoidea/fisiologia , Animais , Arabidopsis/imunologia , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/parasitologia , Locos de Características Quantitativas
4.
Planta ; 251(2): 45, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915930

RESUMO

MAIN CONCLUSION: Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.


Assuntos
Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Xilema/metabolismo , Xilema/fisiologia , Adaptação Fisiológica/fisiologia , Transporte Biológico/fisiologia , Secas , Imageamento por Ressonância Magnética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia
5.
Plant Physiol Biochem ; 146: 211-219, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31756607

RESUMO

Potato (Solanum tuberosum) is an important food crop consumed all over the world, but it is generally sensitive to drought conditions. One of the major physiological processes affected by drought stress is carbon partitioning: the plant's choice of where to allocate its photoassimilates. Our aim was to investigate the molecular factors and possible bottlenecks affecting carbon partitioning during drought. We studied potato cultivars with contrasting drought responses in the greenhouse in the years 2013-2015, and further investigated the expression of genes involved in carbon partitioning and metabolite levels. Our results indicate that one of the most severe effects of drought stress on potato is the arrest of stolon differentiation and formation of tubers. We also identified some physiological traits like stomatal conductance and chlorophyll content as affecting carbon assimilation, partitioning and eventual tuber yield. The gene expressions and biochemical analyses highlight the various tissues prioritized by the plant for assimilate transport during drought stress, and give indications of what distinguishes drought tolerance and sensitivity of cultivated potato. Some of the key genes studied (like Sucrose synthase and Sucrose transporters) may be inclusive breeding targets for drought tolerance in potato.


Assuntos
Solanum tuberosum , Carbono , Secas , Regulação da Expressão Gênica de Plantas , Tubérculos
6.
Curr Biol ; 29(7): 1178-1186.e6, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905604

RESUMO

Potato plants form tuberous storage organs on underground modified stems called stolons. Tubers are rich in starch, proteins, and other important nutrients, making potato one of the most important staple food crops. The timing of tuber development in wild potato is regulated by day length through a mechanism that is closely related to floral transition [1, 2]. Tuberization is also known to be regulated by the availability of assimilates, in particular sucrose, the transported form of sugar, required for starch synthesis. During the onset of tuber development, the mode of sucrose unloading switches from apoplastic to symplastic [3]. Here, we show that this switch may be mediated by the interaction between the tuberization-specific FT homolog StSP6A and the sucrose efflux transporter StSWEET11 [4]. The binding of StSP6A to StSWEET11 blocked the leakage of sucrose to the apoplast, and is therefore likely to promote symplastic sucrose transport. The direct physical interaction between StSWEET11 and StSP6A proteins represents a link between the sugar and photoperiodic pathways for the regulation of potato tuber formation. Our data suggest that a previously undiscovered function for the FT family of proteins extends their role as mobile signals to mediators of source-sink partitioning, opening the possibility for modifying source-sink interactions.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Plant Pathol ; 20(1): 137-152, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160354

RESUMO

Root-knot nematodes transform vascular host cells into permanent feeding structures to selectively withdraw their nutrients from host plants during the course of several weeks. The susceptibility of host plants to root-knot nematode infections is thought to be a complex trait involving many genetic loci. However, genome-wide association (GWA) analysis has so far revealed only four quantitative trait loci (QTLs) linked to the reproductive success of the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana, which suggests that the genetic architecture underlying host susceptibility could be much simpler than previously thought. Here, we report that, by using a relaxed stringency approach in a GWA analysis, we could identify 15 additional loci linked to quantitative variation in the reproductive success of M. incognita in Arabidopsis. To test the robustness of our analysis, we functionally characterized six genes located in a QTL with the lowest acceptable statistical support and smallest effect size. This led us to identify ETHYLENE RESPONSE FACTOR 6 (ERF6) as a novel susceptibility gene for M. incognita in Arabidopsis. ERF6 functions as a transcriptional activator and suppressor of genes in response to various abiotic stresses independent of ethylene signalling. However, whole-transcriptome analysis of nematode-infected roots of the Arabidopsis erf6-1 knockout mutant line showed that allelic variation at this locus may regulate the conversion of aminocyclopropane-1-carboxylate (ACC) into ethylene by altering the expression of 1-aminocyclopropane-1-carboxylate oxidase 3 (ACO3). Our data further suggest that tolerance to abiotic stress mediated by ERF6 forms a novel layer of control in the susceptibility of Arabidopsis to M. incognita.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/parasitologia , Doenças das Plantas/parasitologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética
8.
New Phytol ; 218(2): 724-737, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468687

RESUMO

Susceptibility to the root-knot nematode Meloidogyne incognita in plants is thought to be a complex trait based on multiple genes involved in cell differentiation, growth and defence. Previous genetic analyses of susceptibility to M. incognita have mainly focused on segregating dominant resistance genes in crops. It is not known if plants harbour significant genetic variation in susceptibility to M. incognita independent of dominant resistance. To study the genetic architecture of susceptibility to M. incognita, we analysed nematode reproduction on a highly diverse set of 340 natural inbred lines of Arabidopsis thaliana with genome-wide association mapping. We observed a surprisingly large variation in nematode reproduction among these lines. Genome-wide association mapping revealed four quantitative trait loci (QTLs) located on chromosomes 1 and 5 of A. thaliana significantly associated with reproductive success of M. incognita, none of which harbours typical resistance gene homologues. Mutant analysis of three genes located in two QTLs showed that the transcription factor BRASSINAZOLE RESISTANT1 and an F-box family protein may function as (co-)regulators of susceptibility to M. incognita in Arabidopsis. Our data suggest that breeding for loss-of-susceptibility, based on allelic variants critically involved in nematode feeding, could be used to make crops more resilient to root-knot nematodes.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , Mapeamento Cromossômico , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Doenças das Plantas/genética , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodução
9.
J Plant Physiol ; 170(14): 1228-34, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23683509

RESUMO

GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.


Assuntos
Giberelinas/metabolismo , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Agrobacterium/genética , Vias Biossintéticas/efeitos dos fármacos , Clonagem Molecular , Regulação para Baixo/efeitos dos fármacos , Retroalimentação Fisiológica , Giberelinas/biossíntese , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Interferência de RNA , Solanum tuberosum/metabolismo
10.
Nature ; 495(7440): 246-50, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23467094

RESUMO

Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.


Assuntos
Agricultura , Alelos , Variação Genética/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Aclimatação , Arabidopsis , Cromossomos de Plantas/genética , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos da radiação , Europa (Continente) , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Luz , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/efeitos da radiação , Solanum tuberosum/efeitos da radiação , América do Sul , Fatores de Tempo
11.
Front Plant Sci ; 4: 524, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391658

RESUMO

The PIN family of trans-membrane proteins mediates auxin efflux throughout the plant and during various phases of plant development. In Arabidopsis thaliana, the PIN family comprised of 8 members, divided into "short" and "long" PINs according to the length of the hydrophilic domain of the protein. Based on sequence homology using the recently published potato genome sequence (Solanum tuberosum group Phureja) we identified ten annotated potato StPIN genes. Mining the publicly available gene expression data, we constructed a catalog tissue specificity of StPIN gene expression, focusing on the process of tuberization. A total of four StPIN genes exhibited increased expression 4 days after tuber induction, prior to the onset of stolon swelling. For two PIN genes, StPIN4 and StPIN2, promoter sequences were cloned and fused to the GUS reporter protein to study tissue specificity in more detail. StPIN4 promoter driven GUS staining was detected in the flower stigma, in the flower style, below the ovary and petals, in the root tips, in the vascular tissue of the stolons and in the tuber parenchyma cells. StPIN2 promoter driven GUS staining was detected in flower buds, in the vascular tissue of the swelling stolons and in the storage parenchyma of the growing tubers. Based on our results, we postulate a role for the StPINs in redistributing auxin in the swelling stolon during early events in tuber development.

12.
J Exp Bot ; 63(12): 4539-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22689826

RESUMO

Various transcriptional networks and plant hormones have been implicated in controlling different aspects of potato tuber formation. Due to its broad impact on many plant developmental processes, a role for auxin in tuber initiation has been suggested but never fully resolved. Here, auxin concentrations were measured throughout the plant prior to and during the process of tuber formation. Auxin levels increase dramatically in the stolon prior to tuberization and remain relatively high during subsequent tuber growth, suggesting a promoting role for auxin in tuber formation. Furthermore, in vitro tuberization experiments showed higher levels of tuber formation from axillary buds of explants where the auxin source (stolon tip) had been removed. This phenotype could be rescued by application of auxin on the ablated stolon tips. In addition, a synthetic strigolactone analogue applied on the basal part of the stolon resulted in fewer tubers. The experiments indicate that a system for the production and directional transport of auxin exists in stolons and acts synergistically with strigolactones to control the outgrowth of the axillary stolon buds, similar to the control of above-ground shoot branching.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Transporte Biológico , Sinergismo Farmacológico , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/antagonistas & inibidores , Lactonas/análise , Fenótipo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Tubérculos/efeitos dos fármacos , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia
13.
BMC Plant Biol ; 12: 17, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22313736

RESUMO

BACKGROUND: With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization. RESULTS: Leaf and tuber samples were analysed and screened for the presence of conserved and tissue dependent eQTLs. Expression QTLs present in both tissues are predominantly cis-acting whilst for tissue specific QTLs, the percentage of trans-acting QTLs increases. Tissue dependent eQTLs were assigned to functional classes and visualized in metabolic pathways. We identified a potential regulatory network on chromosome 10 involving genes crucial for maintaining circadian rhythms and controlling clock output genes. In addition, we show that the type of genetic material screened and sampling strategy applied, can have a high impact on the output of genetical genomics studies. CONCLUSIONS: Identification of tissue dependent regulatory networks based on mapped differential expression not only gives us insight in tissue dependent gene subfunctionalization but brings new insights into key biological processes and delivers targets for future haplotyping and genetic marker development.


Assuntos
Genoma de Planta , Folhas de Planta/genética , Tubérculos/genética , Locos de Características Quantitativas , Solanum tuberosum/genética , Mapeamento Cromossômico , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Ligação Genética , Genômica , Análise de Sequência com Séries de Oligonucleotídeos
14.
BMC Genomics ; 11: 158, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20210995

RESUMO

BACKGROUND: Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. Here we present the identification of novel candidate genes for different potato tuber quality traits by employing a pooling approach reducing the number of hybridizations needed. Extreme genotypes for a quantitative trait are collected and the RNA from contrasting bulks is then profiled with the aim of finding differentially expressed genes. RESULTS: We have successfully implemented the pooling strategy for potato quality traits and identified candidate genes associated with potato tuber flesh color and tuber cooking type. Elevated expression level of a dominant allele of the beta-carotene hydroxylase (bch) gene was associated with yellow flesh color through mapping of the gene under a major QTL for flesh color on chromosome 3. For a second trait, a candidate gene with homology to a tyrosine-lysine rich protein (TLRP) was identified based on allele specificity of the probe on the microarray. TLRP was mapped on chromosome 9 in close proximity to a QTL for potato cooking type strengthening its significance as a candidate gene. Furthermore, we have performed a profiling experiment targeting a polygenic trait, by pooling individual genotypes based both on phenotypic and marker data, allowing the identification of candidate genes associated with the two different linkage groups. CONCLUSIONS: A pooling approach for RNA-profiling with the aim of identifying novel candidate genes associated with tuber quality traits was successfully implemented. The identified candidate genes for tuber flesh color (bch) and cooking type (tlrp) can provide useful markers for breeding schemes in the future. Strengths and limitations of the approach are discussed.


Assuntos
Genoma de Planta , Genômica/métodos , Locos de Características Quantitativas , Solanum tuberosum/genética , Carotenoides/análise , Mapeamento Cromossômico , Genes de Plantas , Oxigenases de Função Mista/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Tubérculos/genética , Tubérculos/metabolismo , RNA de Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/metabolismo
15.
Genet Sel Evol ; 35(5): 533-57, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12939204

RESUMO

In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken.


Assuntos
Galinhas/genética , Variação Genética , Repetições de Microssatélites , Animais , Interpretação Estatística de Dados , Genética Populacional , Mutação , Polimorfismo Genético
16.
Plant Physiol ; 129(4): 1494-506, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12177463

RESUMO

Non-specific lipid-transfer proteins (nsLTPs) are capable of binding lipid compounds in plant tissues and are coded by the nsLTP genes. Here, we present the analysis of expression of a family of potato (Solanum tuberosum) nsLTP genes that express throughout the developing plant in a highly tissue-specific manner. Three transcript-derived fragments were isolated using an amplified restriction fragment polymorphism-derived technique for RNA fingerprinting that show homology to plant nsLTP genes. These transcript-derived fragments displayed modulated expression profiles related to the development of new tissues, with a peak of transcription around the time of tuberization and just prior to sprout development, at dormancy breakage. In addition, a homologous family of expressed sequence tags was identified whose individual members could be classified according to their tissue specificity. Two subgroups of expressed sequence tags were found to express during tuber life cycle. To study the regulation of potato nsLTP genes, two putative potato nsLTP promoters were isolated and their expression was studied using promoter-marker-gene fusions. The results showed that one of the two promoters directed a highly specific pattern of expression detected in the phloem surrounding the nodes of young plants and in the same tissue of tuber related organs, whereas the second putative promoter showed little tissue or organ specificity. This difference in expression is likely due to a 331-bp insertion present in the tissue-specific promoter.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Solanum tuberosum/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , DNA de Plantas/química , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Hibridização In Situ , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Caules de Planta/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Solanum tuberosum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA