Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Blood ; 142(25): 2175-2191, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37756525

RESUMO

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Dano ao DNA , Reparo do DNA , Células Germinativas/metabolismo , DNA , Fatores de Transcrição/genética
2.
Br J Haematol ; 202(5): 1033-1048, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423893

RESUMO

Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Diferenciação Celular , Prognóstico , Epigênese Genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190302

RESUMO

Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM.

4.
Front Oncol ; 12: 903691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003783

RESUMO

The zinc finger protein Growth Factor Independence 1 (GFI1) acts as a transcriptional repressor regulating differentiation of myeloid and lymphoid cells. A single nucleotide polymorphism of GFI1, GFI1-36N, has a prevalence of 7% in healthy Caucasians and 15% in acute myeloid leukemia (AML) patients, hence most probably predisposing to AML. One reason for this is that GFI1-36N differs from the wildtype form GFI1-36S regarding its ability to induce epigenetic changes resulting in a derepression of oncogenes. Using proteomics, immunofluorescence, and immunoblotting we have now gained evidence that murine GFI1-36N leukemic cells exhibit a higher protein level of the pro-proliferative protein arginine N-methyltransferase 5 (PRMT5) as well as increased levels of the cell cycle propagating cyclin-dependent kinases 4 (CDK4) and 6 (CDK6) leading to a faster proliferation of GFI1-36N leukemic cells in vitro. As a therapeutic approach, we subsequently treated leukemic GFI1-36S and GFI1-36N cells with the CDK4/6 inhibitor palbociclib and observed that GFI1-36N leukemic cells were more susceptible to this treatment. The findings suggest that presence of the GFI1-36N variant increases proliferation of leukemic cells and could possibly be a marker for a specific subset of AML patients sensitive to CDK4/6 inhibitors such as palbociclib.

5.
Leukemia ; 36(9): 2196-2207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35804097

RESUMO

Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.


Assuntos
Hematopoese , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição
6.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35158754

RESUMO

Acute myeloid leukemia (AML) is a group of hematological cancers with metabolic heterogeneity. Oxidative phosphorylation (OXPHOS) has been reported to play an important role in the function of leukemic stem cells and chemotherapy-resistant cells and are associated with inferior prognosis in AML patients. However, the relationship between metabolic phenotype and genetic mutations are yet to be explored. In the present study, we demonstrate that AML cell lines have high metabolic heterogeneity, and AML cells with MLL/AF9 have upregulated mitochondrial activity and mainly depend on OXPHOS for energy production. Furthermore, we show that metformin repressed the proliferation of MLL/AF9 AML cells by inhibiting mitochondrial respiration. Together, this study demonstrates that AML cells with an MLL/AF9 genotype have a high dependency on OXPHOS and could be therapeutically targeted by metformin.

7.
Br J Haematol ; 196(4): 995-1006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34792186

RESUMO

Acute myeloid leukaemia (AML) is a haematological malignancy characterized by a poor prognosis. Bone marrow mesenchymal stromal cells (BM MSCs) support leukaemic cells in preventing chemotherapy-induced apoptosis. This encouraged us to investigate leukaemia-BM niche-associated signalling and to identify signalling cascades supporting the interaction of leukaemic cells and BM MSC. Our study demonstrated functional differences between MSCs originating from leukaemic (AML MSCs) and healthy donors (HD MSCs). The direct interaction of leukaemic and AML MSCs was indispensable in influencing AML cell proliferation. We further identified an important role for Notch expression and its activation in AML MSCs contributing to the enhanced proliferation of AML cells. Supporting this observation, overexpression of the intracellular Notch domain (Notch ICN) in AML MSCs enhanced AML cells' proliferation. From a therapeutic point of view, dexamethasone treatment impeded Notch signalling in AML MSCs resulting in reduced AML cell proliferation. Concurrent with our data, Notch inhibitors had only a marginal effect on leukaemic cells alone but strongly influenced Notch signalling in AML MSCs and abrogated their cytoprotective function on AML cells. In vivo, dexamethasone treatment impeded Notch signalling in AML MSCs leading to a reduced number of AML MSCs and improved survival of leukaemic mice. In summary, targeting the interaction of leukaemic cells and AML MSCs using dexamethasone or Notch inhibitors might further improve treatment outcomes in AML patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores Notch/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Humanos , Masculino , Camundongos
8.
J Extracell Vesicles ; 7(1): 1528109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357008

RESUMO

Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.

9.
Nat Commun ; 9(1): 994, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520052

RESUMO

Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.


Assuntos
Transgenes/genética , Animais , Linhagem Celular , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética , Transgenes/fisiologia
10.
Haematologica ; 103(4): 614-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29326122

RESUMO

Differentiation of hematopoietic stem cells is regulated by a concert of different transcription factors. Disturbed transcription factor function can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth factor independence 1b (Gfi1b) is a repressing transcription factor regulating quiescence of hematopoietic stem cells and differentiation of erythrocytes and platelets. Here, we show that low expression of Gfi1b in blast cells is associated with an inferior prognosis of MDS and AML patients. Using different models of human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly increased the number of leukemic stem cells with upregulation of genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b led to epigenetic changes, increased levels of reactive oxygen species, as well as alteration in the p38/Akt/FoXO pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS and AML development.


Assuntos
Leucemia Mieloide Aguda/etiologia , Síndromes Mielodisplásicas/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Epigenômica , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Heterozigoto , Homozigoto , Humanos , Camundongos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Haematologica ; 101(10): 1216-1227, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27390361

RESUMO

The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/patologia , Macrófagos/patologia , Fatores de Transcrição/fisiologia , Animais , Medula Óssea/patologia , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Baço/patologia
12.
Exp Hematol ; 44(7): 590-595.e1, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080012

RESUMO

Inherited gene variants play an important role in malignant diseases. The transcriptional repressor growth factor independence 1 (GFI1) regulates hematopoietic stem cell (HSC) self-renewal and differentiation. A single-nucleotide polymorphism of GFI1 (rs34631763) generates a protein with an asparagine (N) instead of a serine (S) at position 36 (GFI1(36N)) and has a prevalence of 3%-5% among Caucasians. Because GFI1 regulates myeloid development, we examined the role of GFI1(36N) on the course of MDS disease. To this end, we determined allele frequencies of GFI1(36N) in four independent MDS cohorts from the Netherlands and Belgium, Germany, the ICGC consortium, and the United States. The GFI1(36N) allele frequency in the 723 MDS patients genotyped ranged between 9% and 12%. GFI1(36N) was an independent adverse prognostic factor for overall survival, acute myeloid leukemia-free survival, and event-free survival in a univariate analysis. After adjustment for age, bone marrow blast percentage, IPSS score, mutational status, and cytogenetic findings, GFI1(36N) remained an independent adverse prognostic marker. GFI1(36S) homozygous patients exhibited a sustained response to treatment with hypomethylating agents, whereas GFI1(36N) patients had a poor sustained response to this therapy. Because allele status of GFI1(36N) is readily determined using basic molecular techniques, we propose inclusion of GFI1(36N) status in future prospective studies for MDS patients to better predict prognosis and guide therapeutic decisions.


Assuntos
Alelos , Proteínas de Ligação a DNA/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Adulto , Idoso , Substituição de Aminoácidos , Biomarcadores , Medula Óssea/patologia , Estudos de Coortes , Análise Citogenética , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Pancitopenia , Fenótipo , Prognóstico , Análise de Sobrevida
13.
Leuk Lymphoma ; 56(11): 3189-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25818505

RESUMO

Cytomegalovirus (HCMV) reactivation occurs frequently after hematopoietic stem cell transplantation and is associated with an increased treatment-related mortality. Induction of apoptosis by HCMV is unusual because HCMV utilizes various strategies to prevent apoptosis in infected cells in order to delay cell death and maintain viral replication. Here we show that HCMV can infect the acute leukemia cell lines Kasumi-1 (AML) and SD-1 (BCR-ABL-positive ALL), which inhibited their proliferation and induced apoptosis in almost all cells after 14 days. Although HCMV induced a significant up-regulation of the anti-apoptotic gene cFLIP and the anti-stress gene Gadd45a, and simultaneously down-regulated the pro-apoptotic genes p53, Gadd45gamma in Kasumi-1 and SD-1 cells, we found that these anti-apoptotic mechanisms failed in HCMV-infected acute leukemia cells and apoptosis occurred via a caspase-dependent pathway. We conclude that HCMV can provide anti-leukemic effects in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required.


Assuntos
Apoptose , Citomegalovirus/fisiologia , Ativação Viral , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Inativação Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Proteínas Imediatamente Precoces/genética , Leucemia , RNA Interferente Pequeno/genética , Receptor Toll-Like 9/genética
14.
Cancer Genet ; 206(7-8): 279-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24042169

RESUMO

The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells.


Assuntos
Cromossomos Humanos Par 11/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Papillomavirus Humano 18 , RNA Mensageiro/genética , Neoplasias do Colo do Útero/virologia , Animais , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/fisiologia , Feminino , Perfilação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Neoplasias do Colo do Útero/genética
15.
Genome Res ; 23(2): 248-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23080539

RESUMO

Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.


Assuntos
Senescência Celular/genética , Metilação de DNA , Células-Tronco Pluripotentes/metabolismo , Adulto , Idoso , Linhagem Celular Transformada , Células Cultivadas , Senescência Celular/efeitos da radiação , Metilação de DNA/efeitos da radiação , Epigênese Genética/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Pessoa de Meia-Idade , Modelos Biológicos , Células-Tronco Pluripotentes/efeitos da radiação
16.
Int J Hematol ; 93(1): 74-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21203871

RESUMO

In the present study, telomere length, telomerase activity, the mutation load of immunoglobulin variable heavy chain (IGHV) genes, and established prognostic factors were investigated in 78 patients with chronic lymphocytic leukaemia (CLL) to determine the impact of telomere biology on the pathogenesis of CLL. Telomere length was measured by an automated multi-colour flow-FISH, and an age-independent delta telomere length (ΔTL) was calculated. CLL with unmutated IGHV genes was associated with shorter telomeres (p = 0.002). Furthermore, we observed a linear correlation between the frequency of IGHV gene mutations and elongation of telomeres (r = 0.509, p < 0.001). With respect to prognosis, a threshold ΔTL of -4.2 kb was the best predictor for progression-free and overall survival. ΔTL was not significantly altered over time or with therapy. The correlation between the mutational load in IGHV genes and the ΔTL in CLL might reflect the initial telomere length of the putative cell of origin (pre- versus post-germinal center B cells). In conclusion, the ΔTL is a reliable prognostic marker for patients with CLL. Short telomeres and high telomerase activity as occurs in some patients with CLL with a worse prognosis might be an ideal target for treatment with telomerase inhibitors.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Mutação , Telômero/genética , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Estudos Retrospectivos , Taxa de Sobrevida
17.
Hum Immunol ; 71(5): 489-95, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20156510

RESUMO

The aim of this study was to determine the prognostic significance of soluble human leukocyte antigen (HLA) class I (sHLA-I) and HLA-G molecules in lung cancer patients. A total of 23 small-cell lung cancer (SCLC) and 114 non-small-cell lung cancer (NSCLC) patients, including 55 adenocarcinoma, 46 squamous cell carcinoma (SCC), and 13 patients with undifferentiated carcinoma, were prospectively enrolled. Levels of sHLA-G and sHLA-I were analyzed by specific enzyme-linked immunosorbent assay. Median levels of sHLA-G and sHLA-I were significantly increased in patients compared with controls (34 ng/ml [3.6-160] vs 14 ng/ml [0-98], p < 0.0001; 2580 ng/ml [749-5770] vs 1370 ng/ml [274-2670], p < 0.0001, respectively). Regarding the different subgroups, patients with NSCLC or SCLC showed increased sHLA-I levels, whereas sHLA-G was exclusively elevated in NSCLC, especially in patients with SCC. Patients with sHLA-I<2800 ng/ml (p = 0.008) or sHLA-G<40 ng/ml (p = 0.073) showed prolonged overall survival (OS). Using these cut-offs in patients with SCC, a pronounced prognostic significance for sHLA-G (p = 0.003) and sHLA-I (p = 0.004) was observed for the prediction of OS. Here, multivariate analysis confirmed sHLA-G and sHLA-I in addition to disease stage as independent prognostic factors. The prognostic power was further enhanced by combining the two factors and comparing the OS of patients with low sHLA-I and low sHLA-G against the remaining ones. In conclusion, plasma levels of sHLA-G and sHLA-I are potent predictors for OS in lung cancer patients.


Assuntos
Biomarcadores Tumorais/sangue , Antígenos HLA/sangue , Antígenos de Histocompatibilidade Classe I/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Biomarcadores Tumorais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Antígenos HLA-G , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico
18.
Mol Ther ; 16(4): 757-64, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18334984

RESUMO

Pulmonary alveolar proteinosis (PAP) due to deficiency of the common beta-chain (beta(c)) of the interleukin-3 (IL-3)/IL-5/granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors is a rare monogeneic disease characterized by functional insufficiency of pulmonary macrophages. Hematopoietic stem cell gene therapy for restoring expression of beta(c)-protein in the hematopoietic system may offer a curative approach. Toward this end, we generated a retroviral construct expressing the murine beta(c) (mbeta(c)) gene and conducted investigations in a murine model of beta(c)-deficient PAP. Functional correction of mbeta(c) activity in mbeta(c)(-/-) bone marrow (BM) cells was demonstrated by restoration of in vitro colony formation in response to GM-CSF. In addition, in a murine in vivo model of mbeta(c)-deficient PAP mbeta(c) gene transfer to hematopoietic stem cells not only restored the GM-CSF-sensitivity of hematopoietic progenitor cells but also, within a period of 12 weeks, almost completely reversed the morphologic features of surfactant accumulation. These results were obtained despite modest transduction levels (10-20%) and, in comparison to wild-type mice, clearly reduced beta(c) expression levels were detected in hematopoietic cells. Therefore, our data demonstrating genetic and functional correction of mbeta(c)(-/-) deficiency in vitro as well as in a murine in vivo model of PAP strongly suggest gene therapy as a potential new treatment modality in beta(c)-deficient PAP.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Proteinose Alveolar Pulmonar/terapia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Subunidade beta Comum dos Receptores de Citocinas/genética , Terapia Genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células-Tronco Hematopoéticas/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia , Surfactantes Pulmonares/metabolismo , Retroviridae/genética
19.
Hum Immunol ; 69(2): 79-87, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18361931

RESUMO

Because of the variable clinical course of multiple myeloma, the identification of prognostic parameters is of clinical interest. Therefore, we analyzed the clinical significance of serum levels of soluble human leukocyte antigen class I molecules (sHLA-I), carboxy-terminal telopeptide of type-I collagen (ICTP), and receptor activator of nuclear factor kappa B ligand (RANKL). Compared with controls, sHLA-I were threefold (p < 0.001) elevated in multiple myeloma. Increased levels of ICTP and RANKL were demonstrated in 50 and 43% of patients, respectively. sHLA-I correlated significantly with stage of disease. Serial determination of sHLA-I in 11 patients revealed significantly higher sHLA-I levels (median [range] mug/l) during active disease than during remission (700 [250-2090] versus 380 [130-920]). ICTP demonstrated an association with stages of disease and the presence of osteolytic lesions, whereas there were no differences with respect to active/remittent disease. Importantly, levels of sHLA-I > or = 1000 microg/l and ICTP > or = 5 microg/l were significantly associated with a poor overall survival. For RANKL, no significant associations were observed with disease stages, disease status, osteolytic lesions, and survival. In conclusion, sHLA-I and ICTP serum levels seem to be of prognostic significance in multiple myeloma and might be helpful to identify patients of poor prognosis.


Assuntos
Biomarcadores Tumorais , Antígenos HLA/sangue , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Ligante RANK/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Colágeno Tipo I , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Estadiamento de Neoplasias , Peptídeos , Prognóstico , Análise de Sobrevida
20.
Open Virol J ; 2: 61-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19440465

RESUMO

Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. Adenoviral (Ad) E1A proteins regulate the activity of cellular and viral promoters/enhancers and transcription factors and can suppress tumorigenicity of human cancers. As (i) HHV-8 and Ad may co-exist in immunocompromised patients and (ii) E1A might be considered as therapeutic transgene for HHV-8-associated neoplasms we investigated whether the promoter of the latency-associated nuclear antigen (LANAp) controlling expression of vCyclin, vFLIP, and LANA proteins required for latent type infection is regulated by E1A. Transfection experiments in MV3 melanoma cells revealed activation of the LANAp by Ad5 E1A constructs containing an intact N terminus (aa 1-119). In particular, an Ad12 E1A mutant, Spm2, lacking six consecutive alanine residues in the "spacer" region activated the HHV-8 promoter about 15-fold compared to vector controls. In summary, we report the activation of the LANAp by E1A as a novel interaction of E1A with a viral promoter. These data may have relevance for the management of viral infections in immunocompromised patients. A role for E1A as a therapeutic in this context remains to be defined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA