Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7200, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893603

RESUMO

Chimeric antigen receptor (CAR) T cells targeting the CD19 antigen are effective in treating adults and children with B-cell malignancies. Place-of-care manufacturing may improve performance and accessibility by obviating the need to cryopreserve and transport cells to centralized facilities. Here we develop an anti-CD19 CAR (CAR19) comprised of the 4-1BB co-stimulatory and TNFRSF19 transmembrane domains, showing anti-tumor efficacy in an in vivo xenograft lymphoma model. CAR19 T cells are manufactured under current good manufacturing practices (cGMP) at two disparate clinical sites, Moscow (Russia) and Cleveland (USA). The CAR19 T-cells is used to treat patients with relapsed/refractory pediatric B-cell Acute Lymphocytic Leukemia (ALL; n = 31) or adult B-cell Lymphoma (NHL; n = 23) in two independently conducted phase I clinical trials with safety as the primary outcome (NCT03467256 and NCT03434769, respectively). Probability of measurable residual disease-negative remission was also a primary outcome in the ALL study. Secondary outcomes include complete remission (CR) rates, overall survival and median duration of response. CR rates are 89% (ALL) and 73% (NHL). After a median follow-up of 17 months, one-year survival rate of ALL complete responders is 79.2% (95%CI 64.5‒97.2%) and median duration of response is 10.2 months. For NHL complete responders one-year survival is 92.9%, and median duration of response has not been reached. Place-of-care manufacturing produces consistent CAR-T cell products at multiple sites that are effective for the treatment of patients with B-cell malignancies.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/imunologia , Linfoma de Células B/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos T , Receptores do Fator de Necrose Tumoral/química , Federação Russa , Estados Unidos , Adulto Jovem
2.
J Gene Med ; 7(6): 818-34, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15693055

RESUMO

BACKGROUND: A stable packaging cell line facilitates large-scale lentivirus vector manufacture. However, it has been difficult to produce clinical-scale HIV-1-based lentiviral vectors using a packaging cell line, in part due to toxicity of packaging genes, and gene silencing that occurs during the long culture period necessary for sequential addition of packaging constructs. METHODS: To avoid these problems, we developed a three-level cascade gene regulation system designed to remove tetracycline transactivator (tTA) from cytomegalovirus immediate early promoter (CMV)-controlled expression to reduce cytotoxicity from constitutive expression of tTA and leaky expression of packaging genes. We also performed a one-step integration of the three packaging plasmids to shorten the culture time for clonal selection. RESULTS: Although leaky expression of p24 and vector production still occurred despite the three-level regulation system, little cytotoxicity was observed and producer cells could be expanded for large-scale production. Producer cells yielded remarkably stable vector production over a period greater than 11 days with the highest titer 3.5 x 10(7) transducing units (TU)/ml and p24 300 ng/ml, yielding 2.2 x 10(11) TU and 1.8 milligram (mg) p24 from one cell factory. No replication-competent lentivirus (RCL) was detected. Long-term analysis demonstrated that, although the cells are genetically stable, partial gene silencing occurs after 2-3 months in culture; however, the one-step construct integration allowed prolonged vector production before significant gene silencing. Concentrated vector resulted in 90% transduction in CD4+ lymphocytes at 20 TU per cell. CD34+ progenitor cells were transduced at 41-46% efficiency, and long-term initiating culture (LTC-IC) was transduced at 45-51%. CONCLUSIONS: These results demonstrate for the first time HIV-1-based lentiviral vector production on the large scale using a packaging cell line.


Assuntos
Vetores Genéticos/genética , HIV-1/genética , Lentivirus/genética , Sequência de Bases , Linhagem Celular , Células Clonais , Clonagem Molecular , Códon , Ensaio de Imunoadsorção Enzimática , Proteínas de Fusão gag-pol/química , Proteínas de Fusão gag-pol/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos do Gene rev/química , Produtos do Gene rev/genética , Produtos do Gene tat/química , Produtos do Gene tat/genética , Engenharia Genética , Vetores Genéticos/biossíntese , Células HeLa , Humanos , Cinética , Glicoproteínas de Membrana/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Plasmídeos , Tetraciclina/farmacologia , Transdução Genética , Transfecção , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Replicação Viral , Produtos do Gene rev do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA