Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadk3772, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324692

RESUMO

The recently discovered superconductor UTe2 is a promising candidate for spin-triplet superconductors, but the symmetry of the superconducting order parameter remains highly controversial. Here, we determine the superconducting gap structure by the thermal conductivity of ultraclean UTe2 single crystals. We find that the a-axis thermal conductivity divided by temperature κ/T in zero-temperature limit is vanishingly small for both magnetic field H‖a and H‖c axes up to H/Hc2 ∼ 0.2, demonstrating the absence of nodes around the a axis contrary to the previous belief. The present results, combined with the reduction of nuclear magnetic resonance Knight shift, indicate that the superconducting order parameter belongs to the isotropic Au representation with a fully gapped pairing state, analogous to the B phase of superfluid 3He. These findings reveal that UTe2 is likely to be a long-sought three-dimensional strong topological superconductor, hosting helical Majorana surface states on any crystal plane.

2.
Nat Commun ; 14(1): 2966, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221184

RESUMO

Chiral spin-triplet superconductivity is a topologically nontrivial pairing state with broken time-reversal symmetry, which can host Majorana quasiparticles. The heavy-fermion superconductor UTe2 exhibits peculiar properties of spin-triplet pairing, and the possible chiral state has been actively discussed. However, the symmetry and nodal structure of its order parameter in the bulk, which determine the Majorana surface states, remains controversial. Here we focus on the number and positions of superconducting gap nodes in the ground state of UTe2. Our magnetic penetration depth measurements for three field orientations in three crystals all show the power-law temperature dependence with exponents close to 2, which excludes single-component spin-triplet states. The anisotropy of low-energy quasiparticle excitations indicates multiple point nodes near the ky- and kz-axes in momentum space. These results can be consistently explained by a chiral B3u + iAu non-unitary state, providing fundamentals of the topological properties in UTe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA