Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(52): 23892-23898, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32964645

RESUMO

The syntheses of the novel silicon-bridged tris(tetraorganotin) compounds MeSi(CH2 SnPh2 R)3 (2, R=Ph; 5, R=Me3 SiCH2 ) and their halogen-substituted derivatives MeSi(CH2 SnPh(3-n) In )3 (3, n=1; 4, n=2) and MeSi(CH2 SnI2 R)3 (6, R=Me3 SiCH2 ) are reported. The reaction of compound 4 with di-t-butyltin oxide (t-Bu2 SnO)3 gives the oktokaideka-nuclear (18-nuclear) molecular diorganotin oxide [MeSi(CH2 SnPhO)3 ]6 (7) while the reaction of 6 with sodium hydroxide, NaOH, provides the trikonta-nuclear (30-nuclear) molecular diorganotin oxide [MeSi(CH2 SnRO)3 ]10 (8, R=Me3 SiCH2 ). Both 7 and 8 show belt-like ladder-type macrocyclic structures and are by far the biggest molecular diorganotin oxides reported to date. The compounds have been characterized by elemental analyses, electrospray mass spectrometry (ESI-MS), NMR spectroscopy, 1 H DOSY NMR spectroscopy (7), IR spectroscopy (7, 8), and single-crystal X-ray diffraction analysis (2, 7, 8).

2.
Chemistry ; 26(46): 10550-10554, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32222003

RESUMO

Hierarchical helicates based on ketone-substituted titanium(IV)triscatecholates show different monomer-dimer behavior depending on different solvents. The dimerization constants of a whole series of differently alkyl-substituted complexes is analyzed to show that the solvent has a very strong influence on the dimerization. Hereby, effects like solvophobicity/philicity, sterics, electronics of the substituents and weak side-chain-side-chain interactions seem to act in concert.

3.
Inorg Chem ; 59(3): 1758-1762, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31967799

RESUMO

A cyclohexyl substituent strongly prefers the chair conformation with large substituents in equatorial positions, while other cycloalkyls are structurally more flexible. In hierarchically formed dimeric titanium(IV) tris(catecholates) equatorial versus axial connection of the cyclohexane to the ester results in either a more compact (axial) or more expanded (equatorial) structure. In DMSO solution the axial position results in a compact structure which minimizes solvophobic effects, leading to higher stability. However, computational investigations indicate that additionally intramolecular London dispersion interactions significantly contribute to the stability of the dimer. Thus, weak side-chain-side-chain interactions are responsible for the high stability of cyclohexyl ester derivatives with axial compared to equatorial ester connection.

4.
Chemistry ; 26(17): 3829-3833, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31899932

RESUMO

The thioester moiety is introduced as a lithium binding unit for the hierarchical formation of titanium(IV) catecholate-based lithium-bridged helicates. In solution, the coordination compounds show a monomer-dimer equilibrium which -in comparison to the oxo esters- is significantly shifted towards the monomers. In addition, the influence of the thioester side chain on the dimerization behavior is investigated and an expansible/compressible molecular switch is synthesized. In the latter case expansion and compression are performed reversibly in methanol, whereas in DMSO spontaneous expansion occurs.

5.
Chemistry ; 26(6): 1396-1405, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31737953

RESUMO

The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1 H NMR dimerization constants for the monomer-dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by alkenyls, alkynyls and finally benzyls. Furthermore, trends within the different groups of compounds can be observed. For example, the dimer is destabilized by internal double or triple bonds due to π-π repulsion. A strong indication for solvent supported London dispersion interaction between the ester side groups is found by observation of an even/odd alternation of dimerization constants within the series of n-alkyls, n-Ω-alkenyls or n-Ω-alkynyls. This corresponds to the interaction of the parent hydrocarbons, as documented by an even/odd melting point alternation.

6.
Chemistry ; 26(16): 3609-3613, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31833098

RESUMO

The synthesis of a new triaminoguanidinium-based ligand with three tris-chelating [NNO]-binding pockets and C3 symmetry is described. The reaction of tris-(2-pyridinylene-N-oxide)triaminoguanidinium salts with zinc(II) formate leads to the formation of cyclic supramolecular coordination compounds which in solution bind fullerenes in their spherical cavities. The rapid encapsulation of C60 can be observed by NMR spectroscopy and single-crystal X-ray diffraction and is verified using computation.

7.
Angew Chem Int Ed Engl ; 58(37): 12879-12882, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31165534

RESUMO

Two biscatecholester ligands with oligoether spacers were used to prepare dinuclear titanium(IV) triscatecholate based helicates. In the case of Li4 [(1/2)3 Ti2 ], "classical" helicates with three internally bound Li+ ions and syn-oriented ligands in the complex units (fac/fac isomer) were obtained. In the case of the sodium salt Na4 [(2)3 Ti2 ], a different homochiral dinuclear triple-stranded helicate with two internally bound Na+ ions was formed. The complex units are anti-configured, and two of the ligand spacers are connecting internal with external positions of the helicate (mer/mer isomer). Removal of the sodium ions and addition of lithium ions leads to the switching from one topology to the other with an expanded helicate [(2)3 Ti2 ]4- as an intermediate. Switching back to the "non-classical" helicate cannot be observed because severe structural rearrangements would be required.

8.
Angew Chem Int Ed Engl ; 57(36): 11817-11820, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30027682

RESUMO

The control of structural transformations triggered by external signals is important for the development of novel functional devices. In the present study, it is demonstrated that helicates can be designed to structurally respond to the presence of different counterions and to adopt either a compressed or an expanded structure. Reversible switching is not only possible between those two states, furthermore, the twist of the aggregate also can be controlled. Thus, three out of four possible states of a helicate (expanded/left-handed, expanded/right-handed, compressed/left-handed) based on an enantiomerically pure ester bridged dicatecholate ligand are specifically addressed by introduction, exchange, or removal of countercations. This approach is used to reversibly switch between the different states or to successively address them.

9.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 433-435, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765739

RESUMO

The title compound, [HgI2(C10H8N2O2S2)] n , a one-dimensional coordination polymer with HgI2 units and 2,2'-di-thio-bis-(pyridine N-oxide) spacer ligands in an alternating fashion, forms helical chains running along the b axis in the crystal. Within a single coordination polymer strand, the axially chiral 2,2'-di-thio-bis-(pyridine N-oxide) ligands are homochiral, but the enanti-omeric conformation is present in adjacent strands. Within a coordination polymer strand, the iodido ligands point towards the centroids of the aromatic rings of the pyridine N-oxide moieties in the coordination sphere of HgII. Moreover, intra-strand C-H⋯O and C-H⋯I inter-actions, and inter-strand short S⋯I and S⋯O contacts are observed.

10.
Acta Crystallogr C Struct Chem ; 72(Pt 11): 861-866, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27811427

RESUMO

Porphyrin assemblies display interesting photophysical properties and a relatively high thermal stability. Moreover, meso-functionalized porphyrins with virtually fourfold symmetry can be relatively readily synthesized from pyrrole and the appropriate aldehyde. A number of metallo derivatives of 5,10,15,20-tetrakis(4-cyanophenyl)porphyrin, where the N atom of the linear cyano group can act both as a donor for coordination bonds or as an acceptor for hydrogen bonds, have been structurally characterized by single-crystal X-ray analysis. The supramolecular and structural chemistry of the corresponding 2- and 3-cyanophenyl isomers of the parent porphyrin, however, has remained largely unexplored. The crystal structure of [5,10,15,20-tetrakis(3-cyanophenyl)porphyrinato]copper(II) (CuTCNPP) nitrobenzene trisolvate, [Cu(C48H24N8)]·3C6H5NO2, has been determined at 80 K by synchrotron single-crystal X-ray diffraction. CuTCNPP exhibits a C2h-symmetric ααßß conformation, despite an unsymmetrical crystal environment, and is situated on a crystallographic centre of symmetry. The CuII ion adopts a genuine square-planar coordination by the four pyrrole N atoms. The 24-membered porphyrin ring system shows no marked deviation from planarity. In the crystal, the CuTCNPP molecules and two nitrobenzene molecules are face-to-face stacked in an alternating fashion, resulting in corrugated layers. The remaining nitrobenzene guest molecule per CuTCNPP resides in the region between four neighbouring columnar stacks of CuTCNPP and sandwiched nitrobenzene molecules, and is disordered over four positions about a centre of symmetry.

11.
Angew Chem Int Ed Engl ; 54(14): 4370-4, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25676739

RESUMO

The triangular clusters [Zn3Cp*3](+) and [Zn2CuCp*3] were obtained by addition of the in situ generated, electrophilic, and isolobal species [ZnCp*](+) and [CuCp*] to Carmona's compound, [Cp*Zn-ZnCp*], without splitting the ZnZn bond. The choice of non-coordinating fluoroaromatic solvents was crucial. The bonding situations of the all-hydrocarbon-ligand-protected clusters were investigated by quantum chemical calculations revealing a high degree of σ-aromaticity similar to the triatomic hydrogen ion [H3](+). The new species serve as molecular building units of Cu(n)Zn(m) nanobrass clusters as indicated by LIFDI mass spectrometry.

12.
Appl Radiat Isot ; 94: 141-146, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25189703

RESUMO

The [(18)F]fluoroethyl moiety has been widely utilized in the synthesis of (18)F-labelled compounds. The aim of this work was the reliable synthesis of [(18)F]FEtOTf with a novel strategy to increase the reactivity of the commonly used [(18)F]FEB and [(18)F]FEtOTos. [(18)F]FEtOTf and the intermediate [(18)F]FEtOH were synthesized in high RCY (78% and 85%, respectively) and purified by SPE. The high potency of [(18)F]FEtOTf was shown by the efficient alkylation of the deactivated nucleophile aniline under mild conditions, as well as by the synthesis of [(18)F]FEC.


Assuntos
Radioisótopos de Flúor/química , Radioisótopos de Flúor/isolamento & purificação , Marcação por Isótopo/métodos , Mesilatos/síntese química , Mesilatos/isolamento & purificação , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/isolamento & purificação , Compostos de Vinila/química
13.
Chem Commun (Camb) ; 50(57): 7683-5, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24898357

RESUMO

Tris-(2-hydroxybenzylidene)triaminoguanidinium salts having six alkyl chains with proper spacing served as new molecular building blocks for the formation of porous honeycomb networks by van der Waals interaction between interdigitated alkyl chains at the liquid/graphite interfaces.

14.
Angew Chem Int Ed Engl ; 53(20): 5126-30, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24706547

RESUMO

Discrete interlocked three-dimensional structures are synthetic targets that are sometimes difficult to obtain with "classical" synthetic approaches, and dynamic covalent chemistry has been shown to be a useful method to form such interlocked structures as thermodynamically stable products. Although interlocked and defined hollow structures are found in nature, for example, in some viruses, similar structures have rarely been synthesized on a molecular level. Shape-persistent interlocked organic cage compounds with dimensions in the nanometer regime are now accessible in high yields during crystallization through the formation of 96 covalent bonds. The interlocked molecules form an unprecedented porous material with intrinsic and extrinsic pores both in the micropore and mesopore regime.

15.
Angew Chem Int Ed Engl ; 53(6): 1516-20, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24403008

RESUMO

Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape-persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single-crystal X-ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m(2) g(-1) and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.

16.
Acta Crystallogr C ; 69(Pt 10): 1112-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096496

RESUMO

The title compound, [Zn(SiF6)(C12H8N2)2]·CH3OH, contains a neutral heteroleptic tris-chelate Zn(II) complex, viz. [Zn(SiF6)(phen)2] (phen is 1,10-phenanthroline), exhibiting approximate molecular C2 point-group symmetry. The Zn(II) cation adopts a severely distorted octahedral coordination. As far as can be ascertained, the title complex represents the first structurally characterized example of a Zn(II) complex bearing a bidentate-bound hexafluorosilicate ligand. A density functional theory study of the isolated [Zn(SiF6)(phen)2] complex was undertaken to reveal the influence of crystal packing on the molecular structure of the complex. In the crystal structure, the methanol solvent molecule forms a hydrogen bond to one F atom of the hexafluorosilicate ligand. The hydrogen-bonded assemblies so formed are tightly packed in the crystal, as indicated by a high packing coefficient (74.1%).

17.
Dalton Trans ; 42(45): 16066-72, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23963408

RESUMO

C3-symmetric ligands carrying a rigid triaminoguanidinium backbone are important building blocks for the preparation of supramolecular coordination cages as tetrahedra or trigonal bipyramides. Coordination of Eu(III)- or Gd(III)-ions leads to 1,2,4-triazole formation, which has been reported only rarely. Using Pd(II)-complexes as a model system, this triazole formation could be analyzed in more detail. The preparation of Pd(II)-coordination compounds can be easily done under stoichiometric control. These complexes could be transformed into 1,2,4-triazoles using O2 or H2O2 as an oxidation reagent. The steric demand of the PR3-coligand seems to play a key role in the cyclisation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA