Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272177

RESUMO

ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.


Assuntos
Adipogenia , Insulina , Camundongos , Animais , Diferenciação Celular/genética , Adipogenia/genética , Transdução de Sinais , RNA Interferente Pequeno , Proteína 8 Semelhante a Angiopoietina
2.
Am J Physiol Endocrinol Metab ; 319(1): E117-E132, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369418

RESUMO

One of the primary metabolic functions of a mature adipocyte is to supply energy via lipolysis, or the catabolism of stored lipids. Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are critical lipolytic enzymes, and their phosphorylation generates phospho-binding sites for 14-3-3 proteins, a ubiquitously expressed family of molecular scaffolds. Although we previously identified essential roles of the 14-3-3ζ isoform in murine adipogenesis, the presence of 14-3-3 protein binding sites on ATGL and HSL suggests that 14-3-3ζ could also influence mature adipocyte processes like lipolysis. Here we demonstrate that 14-3-3ζ is necessary for lipolysis in male mice and fully differentiated 3T3-L1 adipocytes, as depletion of 14-3-3ζ significantly impaired glycerol and free fatty acid (FFA) release. Unexpectedly, reducing 14-3-3ζ expression was found to significantly impact adipocyte maturity, as observed by reduced abundance of peroxisome proliferator-activated receptor (PPAR)γ2 protein and expression of mature adipocyte genes and those associated with de novo triglyceride synthesis and lipolysis. The impact of 14-3-3ζ depletion on adipocyte maturity was further examined with untargeted lipidomics, which revealed that reductions in 14-3-3ζ abundance promoted the acquisition of a lipidomic signature that resembled undifferentiated preadipocytes. Collectively, these findings reveal a novel aspect of 14-3-3ζ in adipocytes, as reducing 14-3-3ζ was found to have a negative effect on adipocyte maturity and adipocyte-specific processes like lipolysis.


Assuntos
Proteínas 14-3-3/genética , Adipócitos/metabolismo , Adipogenia/genética , Lipólise/genética , Proteínas 14-3-3/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Ácidos Graxos não Esterificados/metabolismo , Glicerol/metabolismo , Lipase/genética , Lipase/metabolismo , Lipidômica , Masculino , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo
3.
Pharmacol Res ; 139: 199-206, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453034

RESUMO

Since their initial characterization as abundant brain proteins more than 5 decades ago, a resurgence into understanding the cellular functions of 14-3-3 proteins has emerged. While one of the earliest functions attributed to this eukaryotic scaffold protein family was the activation of enzymes involved in catecholamine and serotonin biosynthesis, 14-3-3 proteins have since been implicated in the regulation of several cellular processes including cell-cycle control, apoptosis, and metabolism. Moreover, increasing lines of evidence demonstrate links between changes in 14-3-3 protein function and the pathogenesis of chronic diseases. As a result, this has raised the question of whether 14-3-3 proteins represent viable targets for pharmacological intervention against diseases such as obesity, diabetes and cancer. In addition to providing an overview of the 14-3-3 protein family, we will discuss their connections to metabolism and metabolic diseases. We will also elaborate on the potential of targeting 14-3-3 proteins, as well as components of their interactomes, for developing novel therapies for treating metabolic diseases, including diabetes and obesity.


Assuntos
Proteínas 14-3-3/metabolismo , Doenças Metabólicas/metabolismo , Animais , Humanos , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA