Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949689

RESUMO

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanofibras , Nanofibras/química , Animais , Camundongos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Melaninas , Biomarcadores/análise , Alicerces Teciduais/química , Exocitose , Melanoma Experimental/patologia , Melanoma Experimental/diagnóstico
2.
Biosensors (Basel) ; 13(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38131791

RESUMO

Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Óxidos , Qualidade de Vida , Técnicas Biossensoriais/métodos , Tecnologia , Técnicas Eletroquímicas/métodos
3.
Biosens Bioelectron ; 220: 114858, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334367

RESUMO

A novel electrochemical biosensor was developed to monitor fibroblast cells stress levels for the first time in situ under external stimuli based on the recognition of superoxide anion released upon cell damage. The biosensor comprised metallized polycaprolactone electrospun fibers covered with zinc oxide for improved cell adhesion and signal transduction, whilst stable bioconjugates of mercaptobenzoic acid-functionalized gold nanoparticles/superoxide dismutase were employed as recognition bioelements. Biosensors were first tested and optimized for in situ generated superoxide detection by fixed potential amperometry at +0.3 V, with minimal interferences from electroactive species in cell culture media. L929 fibroblast cells were then implanted on the optimized biosensor surface and the biosensor morphologically characterized by scanning electron microscopy (SEM) and fluorescence microscopy, which illustrated the network-type pattern of fibroblasts adjacent to the fiber scaffold. Fibroblast stress was induced by zymosan and monitored at the cells integrated biosensor using fixed potential amperometry (CA) with a sensitivity of 26 nA cm-2 µg mL-1 zymosan and electrochemical impedance spectroscopy (EIS), with similar sensitivity of the biosensor considering the Rs and Z' parameters of around 0.13 Ω cm2 µg-1 mL and high correlation factors R2 of 0.9994. The obtained results underline the applicability of the here developed biosensor for the electrochemical screening of the fibroblast cells stress. The concept in using low-cost biocompatible polymeric fibers as versatile scaffolds for both enzyme immobilization and cell adhesion, opens a new path in developing biosensors for the in-situ investigation of a variety of cellular events.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro/química , Zimosan , Superóxido Dismutase/química , Superóxidos/metabolismo , Técnicas Eletroquímicas
4.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430909

RESUMO

Azathioprine (AZA) is a pharmacologic immunosuppressive agent administrated in various conditions such as autoimmune disease or to prevent the rejection of organ transplantation. The mechanism of action is based on its biologically active metabolite 6-mercaptopurine (6-MP), which is converted, among others, into thioguanine nucleotides capable of incorporating into replicating DNA, which may act as a strong UV chromophore and trigger DNA oxidation. The interaction between azathioprine and DNA, before and after exposure to solar simulator radiation, was investigated using UV-vis spectrometry and differential pulse voltammetry at a glassy carbon electrode. The results indicated that the interaction of AZA with UV radiation was pH-dependent and occurred with the formation of several metabolites, which induced oxidative damage in DNA, and the formation of DNA-metabolite adducts. Moreover, the viability assays obtained for the L929 cell culture showed that both azathioprine and degraded azathioprine induced a decrease in cell proliferation.


Assuntos
Azatioprina , Mercaptopurina , Azatioprina/farmacologia , Fotólise , Mercaptopurina/farmacologia , DNA , Imunossupressores/farmacologia , Adutos de DNA
5.
Biosensors (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884303

RESUMO

PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. For understanding the pathophysiology processes involved in brain disorders, PC-12 cell line is extensively assessed in neuroscience research, including studies on neurotoxicity, neuroprotection, or neurosecretion. Various analytical technologies have been developed to investigate physicochemical processes and the biosensors based on optical and electrochemical techniques, among others, have been at the forefront of this development. This article summarizes the application of different biosensors in PC-12 cell cultures and presents the modern approaches employed in neuronal networks biosensing.


Assuntos
Técnicas Biossensoriais , Animais , Técnicas Eletroquímicas , Neurônios , Neurotransmissores , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA