Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 44(1): 23-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37246889

RESUMO

Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Saliva/química , Técnicas Biossensoriais/métodos
2.
Int J Pharm ; 648: 123610, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977288

RESUMO

In this work, the feasibility of implementing a process analytical technology (PAT) platform consisting of Near Infrared Spectroscopy (NIR) and particle size distribution (PSD) analysis was evaluated for the prediction of granule downstream processability. A Design of Experiments-based calibration set was prepared using a fluid bed melt granulation process by varying the binder content, granulation time, and granulation temperature. The granule samples were characterized using PAT tools and a compaction simulator in the 100-500 kg load range. Comparing the systematic variability in NIR and PSD data, their complementarity was demonstrated by identifying joint and unique sources of variation. These particularities of the data explained some differences in the performance of individual models. Regarding the fusion of data sources, the input data structure for partial least squares (PLS) based models did not significantly impact the predictive performance, as the root mean squared error of prediction (RMSEP) values were similar. Comparing PLS and artificial neural network (ANN) models, it was observed that the ANNs systematically provided superior model performance. For example, the best tensile strength, ejection stress, and detachment stress prediction with ANN resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the 0.180, 0.395, and 0.430 RMSEPs of the PLS models, respectively. Finally, the robustness of the developed models was assessed.


Assuntos
Redes Neurais de Computação , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Calibragem , Temperatura
3.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37686901

RESUMO

Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as "legal highs" or "bath salts", being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).

4.
Talanta ; 255: 124208, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628903

RESUMO

Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 µM and 2.5 mM MA, a LOD of 16.7 µM, a LOQ of 50.0 µM and a sensitivity of 5.3 µA mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography - mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Metanfetamina/análise , Cromatografia Líquida , Medicina Legal , Eletrodos , Psicotrópicos/análise
5.
Biosensors (Basel) ; 12(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005034

RESUMO

The rapid diagnosis of Pseudomonas aeruginosa infection is very important because this bacterium is one of the main sources of healthcare-associated infections. Pseudomonas quinolone signal (PQS) is a specific molecule for quorum sensing (QS) in P. aeruginosa, a form of cell-to-cell bacterial communication and its levels can allow the determination of the bacterial population. In this study, the development of the first electrochemical detection of PQS using screen-printed electrodes modified with carbon nanotubes (CNT-SPE) is reported. The electrochemical fingerprint of PQS was determined using different electrode materials and screen-printed electrodes modified with different nanomaterials. The optimization of the method in terms of electrolyte, pH, and electrochemical technique was achieved. The quantification of PQS was performed using one of the anodic peaks in the electrochemical fingerprint of the PQS on the CNT-SPE. The sensor exhibited a linear range from 0.1 to 15 µM, with a limit of detection of 50 nM. The sensor allowed the selective detection of PQS, with low interference from other QS molecules. The sensor was successfully applied to analysis of real samples (spiked urine and human serum samples, spiked microbiological growth media, and microbiological cultures).


Assuntos
Nanotubos de Carbono , Percepção de Quorum , Atenção à Saúde , Eletrodos , Humanos , Pseudomonas aeruginosa , Quinolonas
6.
Biosensors (Basel) ; 12(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884243

RESUMO

Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, is one of the main sources of infections in healthcare environments, making its detection very important. N-3-oxo-dodecanoyl L-homoserine lactone (3-O-C12-HSL) is a characteristic molecule of quorum sensing-a form of cell-to-cell communication between bacteria-in P. aeruginosa. Its detection can allow the determination of the bacterial population. In this study, the development of the first electrochemical aptasensor for the detection of 3-O-C12-HSL is reported. A carbon-based screen-printed electrode modified with gold nanoparticles proved to be the best platform for the aptasensor. Each step in the fabrication of the aptasensor (i.e., gold nanoparticles' deposition, aptamer immobilization, incubation with the analyte) was optimized and characterized using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Different redox probes in solution were evaluated, the best results being obtained in the presence of [Fe(CN)6]4-/[Fe(CN)6]3-. The binding affinity of 106.7 nM for the immobilized thiol-terminated aptamer was determined using surface plasmon resonance. The quantification of 3-O-C12-HSL was performed by using the electrochemical signal of the redox probe before and after incubation with the analyte. The aptasensor exhibited a logarithmic range from 0.5 to 30 µM, with a limit of detection of 145 ng mL-1 (0.5 µM). The aptasensor was successfully applied for the analysis of real samples (e.g., spiked urine samples, spiked microbiological growth media, and microbiological cultures).


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Atenção à Saúde , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Pseudomonas aeruginosa , Percepção de Quorum
7.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613616

RESUMO

The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Oligonucleotídeos/química , DNA , DNA de Cadeia Simples
8.
J Pharm Anal ; 11(5): 661-666, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34765280

RESUMO

Considering the frequent use of netupitant in polytherapy, the elucidation of its oxidative metabolization pattern is of major importance. However, there is a lack of published research on the redox behavior of this novel neurokinin-1 receptor antagonist. Therefore, this study was performed to simulate the intensive hepatic biotransformation of netupitant using an electrochemically driven method. Most of the known enzyme-mediated reactions occurring in the liver (i.e., N-dealkylation, hydroxylation, and N-oxidation) were successfully mimicked by the electrolytic cell using a boron-doped diamond working electrode. The products were separated by reversed-phase high-performance liquid chromatography and identified by high-resolution mass spectrometry. Aside from its ability to pinpoint formerly unknown metabolites that could be responsible for the known side effects of netupitant or connected with any new perspective concerning future therapeutic indications, this electrochemical process also represents a facile alternative for the synthesis of oxidation products for further in vitro and in vivo studies.

9.
Front Chem ; 9: 641147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796506

RESUMO

Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and α-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.

10.
Nanomaterials (Basel) ; 11(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503937

RESUMO

Organochlorine pesticides (OCPs) embody highly lipophilic hazardous chemicals that are being phased out globally. Due to their persistent nature, they are still contaminating the environment, being classified as persistent organic pollutants (POPs). They bioaccumulate through bioconcentration and biomagnification, leading to elevated concentrations at higher trophic levels. Studies show that human long-term exposure to OCPs is correlated with a large panel of common chronic diseases. Due to toxicity concerns, most OCPs are listed as persistent organic pollutants (POPs). Conventionally, separation techniques such as gas chromatography are used to analyze OCPs (e.g., gas chromatography coupled with mass spectrometry (GC/MS)) or electron capture detection (GC/ECD). These are accurate, but expensive and time-consuming methods, which can only be performed in centralized lab environments after extensive pretreatment of the collected samples. Thus, researchers are continuously fueling the need to pursue new faster and less expensive alternatives for their detection and quantification that can be used in the field, possibly in miniaturized lab-on-a-chip systems. In this context, surface enhanced Raman spectroscopy (SERS) represents an exceptional analytical tool for the trace detection of pollutants, offering molecular fingerprint-type data and high sensitivity. For maximum signal amplification, two conditions are imposed: an efficient substrate and a high affinity toward the analyte. Unfortunately, due to the highly hydrophobic nature of these pollutants (OCPs,) they usually have a low affinity toward SERS substrates, increasing the challenge in their SERS detection. In order to overcome this limitation and take advantage of on-site Raman analysis of pollutants, researchers are devising ingenious strategies that are synthetically discussed in this review paper. Aiming to maximize the weak Raman signal of organochlorine pesticides, current practices of increasing the substrate's performance, along with efforts in improving the selectivity by SERS substrate functionalization meant to adsorb the OCPs in close proximity (via covalent, electrostatic or hydrophobic bonds), are both discussed. Moreover, the prospects of multiplex analysis are also approached. Finally, other perspectives for capturing such hydrophobic molecules (MIPs-molecularly imprinted polymers, immunoassays) and SERS coupled techniques (microfluidics-SERS, electrochemistry-SERS) to overcome some of the restraints are presented.

11.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023042

RESUMO

In spite of being a preventable disease, cervical cancer (CC) remains at high incidence, and it has a significant mortality rate. Although hijacking of the host cellular pathway is fundamental for developing a better understanding of the human papillomavirus (HPV) pathogenesis, a major obstacle is identifying the central molecular targets involved in HPV-driven CC. The aim of this study is to investigate transcriptomic patterns of HPV-infected and normal tissues to identify novel prognostic markers. Analyses of functional enrichment and interaction networks reveal that altered genes are mainly involved in cell cycle, DNA damage, and regulated cell-to-cell signaling. Analysis of The Cancer Genome Atlas (TCGA) data has suggested that patients with unfavorable prognostics are more likely to have DNA repair defects attributed, in most cases, to the presence of HPV. However, further studies are needed to fully unravel the molecular mechanisms of such genes involved in CC.


Assuntos
Proteínas de Neoplasias/genética , Infecções por Papillomavirus/genética , Transcriptoma/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Proteínas de Neoplasias/classificação , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Prognóstico , RNA Mensageiro/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
12.
Biosens Bioelectron ; 155: 112098, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090870

RESUMO

A highly selective and sensitive molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the determination of azithromycin, a broad-spectrum macrolide antibiotic, from various biological samples (urine, tears, plasma). The reversible boronate ester bond-mediated, thin (~75 nm) MIP-based biomimetic recognition layer was electrodeposited in non-aqueous media onto the surface of a glassy carbon electrode (GCE). The surface morphology and the analytical performances of the developed sensor were assessed by scanning electron (SEM) and atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). By employing an indirect electrochemical detection in the presence of 10 mM ferro/ferricyanide as redox probe, the sensor exhibited a very wide dynamic range (13.33 nM-66.67 µM), with an estimated detection limit in the subnanomolar range (0.85 nM azithromycin). The simple to construct sensor demonstrates reusability and good shelf-life, exhibiting remarkable selectivity over a wide number of structurally related and non-related antibiotics, commonly associated drugs and endogenous compounds.


Assuntos
Azitromicina/análise , Azitromicina/farmacocinética , Biomimética/métodos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Azitromicina/química , Monitoramento de Medicamentos , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
ACS Omega ; 4(19): 18126-18135, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720515

RESUMO

Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 µg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.

14.
Med Pharm Rep ; 92(2): 117-122, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31086837

RESUMO

BACKGROUND AND AIMS: The success of a treatment depends on the effectiveness of the medication regimen, provided that patients take the medicines as prescribed. A low rate of adherence in chronic conditions is associated with poor outcome and decreased quality of life, which constitutes an additional burden for the healthcare systems. To correctly identify the dimension of this problem may be a challenge, as there are numerous methods, definitions, patient settings and factors, each with their specific roles. Our aim was to give an appropriate overview of the most common validated methods that can be used to identify non-adherent patients. METHODS: This overview is based on an online search of PubMed database and includes the relevant articles in this field. RESULTS: We included both direct and indirect methods for measuring treatment adherence and presented concise information that can help researchers and clinicians when choosing an appropriate method. Both subjective and objective methods have advantages and disadvantages that should be fully understood and taken into consideration. CONCLUSIONS: Choosing a simple, accurate and inexpensive method that can give supplementary information about the patterns, beliefs and barriers of adherence would be desirable. But because this perfect method to measure treatment adherence does not exist, the best solution seems to be the combined use of at least two methods.

15.
J Chromatogr A ; 1590: 80-87, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30639061

RESUMO

D-amino acids (AA) analysis is becoming more and more relevant for metabolomics, therefore new analytical tools need to be developed. A common approach to achieve AA enantioseparation is chiral derivatization. Among the chiral derivatization reagents, (+) or (-)-1-(9-fluorenyl) ethyl chloroformate ((+) or (-)-FLEC) has proved to be one of the most versatile. Suitable chiral selectivity for FLEC derivatives of amino acids could be obtained in reversed-phase HPLC using nonpolar stationary phases (C4, C8 and C18) and tetrahydrofuran (THF) based mobile phases. This study is meant to provide alternatives to the use of THF as organic modifier by evaluating the selectivity obtained on two phenyl based stationary phases for 19 FLEC-DL-AA pairs of diastereomers using UHPLC-MS. Several mobile phases consisting of ammonium acetate and different common organic solvents (acetonitrile (ACN), methanol (MeOH), 2-propanol (IPA)) were tested using gradient elution. Experimental design was employed for the optimization of the separation conditions. In the optimized conditions, complete chiral separation can be achieved for 18 out of 19 FLEC-DL-AAs in less than 30 min.


Assuntos
Aminoácidos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Aminoácidos/análise , Aminoácidos/química , Fluorenos/química , Estereoisomerismo
16.
Anal Bioanal Chem ; 411(2): 545, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443771

RESUMO

Unfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.

17.
Cancer Manag Res ; 10: 5709-5724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532593

RESUMO

INTRODUCTION: Scientific research is beginning to prove the connection between claims by African traditional medicine and the natural chemical specifics contained in medicinal plant Securidaca longipedunculata. Our previous studies showed that two natural saponin fractions (4A3 and 4A4) identified in the plant as triterpenoid glycosides are capable of activating apoptosis on cervical tumor cell lines. Considering this and some critical roles of human papillomavirus (HPV) E6 oncogene on cervical cells, by promoting carcinogenesis and cell survival, it became necessary to investigate the possible pathways for apoptosis transmission. METHODS: Tests conducted on relevant cervical tumor cell lines such as Caski and Bu25TK included the following: MTT assay; scratch assay (to determine cell migration/invasion); fluorescence microscopy with Annexin V-fluorescein isothiocyanate, muscle progenitor cell) and propidium iodide staining; and finally reverse transcriptase quantitative PCR (RT-qPCR) for gene analysis. RESULTS: Reduced cell proliferation was observed due to activities of 4A3 and 4A4 fractions, with half-maximal inhibitory concentration (IC50) of 7.03 and 16.39 µg/mL, respectively, on Caski cell line. A significant reduction in cell migration occurred within 48 and 72 hours, respectively, for Caski and Bu25TK cell lines. Late apoptosis was activated by 4A3, staining both Annexin V and PI, in contrast to 4A4's early apoptosis. RT-qPCR data revealed a fold change (FC) inhibition of antiapoptotic proteins such as MCL-1 and BCL2L1, with diminished level of AKT-3, VEGFA, MALAT1, etc. The expression of p53, proapoptotic BAD, and caspase-8 was nonsignificant. CONCLUSION: The low expression of AKT-3 and antiapoptotic proteins (MCL-1 and BCL2L1), as well as VEGFA, could simply be an indication for possible suppression of cell survival mechanisms via multiple channels. We therefore conclude that 4A3 and 4A4 fractions mediate activity via the inhibition of phosphatidylinositol-3-OH kinase (PI3K)-AKT/mTOR/NF-kB-dependent antiapoptotic stimuli. Further studies are ongoing to reveal the chemical structures and compositions of these two fractions.

18.
Patient Prefer Adherence ; 12: 1151-1166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013327

RESUMO

BACKGROUND: Several drugs are available for the treatment of autoimmune rheumatic diseases; however, their effectiveness may be negatively influenced by inappropriate adherence. Low adherence and persistence rates have a significant impact on patient quality of life and are associated with health-related expenses. PURPOSE: To provide an up-to-date narrative review on treatment adherence and persistence rates, and discuss the factors that influence them, in patients with autoimmune rheumatic diseases. MATERIALS AND METHODS: We searched the PubMed database for studies among patients with a diagnosis of rheumatoid arthritis (RA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), or psoriatic arthritis (PsA), published from January 2015 to February 2017. Only studies with a well-defined measurement of adherence/persistence and those that carried out an evaluation of the influencing factors were included. RESULTS: Fifteen relevant studies that evaluated adherence and/or persistence were included. Adherence rates varied between 9.3% and 94%, and persistence rates between 23% and 80%. Most of the studies used one method to evaluate adherence or persistence (different questionnaire scores, proportion of days covered, and mean treatment duration). A high concordance was found between the adherence measurements of the Medication Event Monitoring System and Visual Analog Scale. Factors of economic, demographic, and clinical nature were only moderately linked to treatment adherence or persistence. However, patient-related factors - such as positive and increased beliefs in medication necessity, strong views of the chronic nature of the diseases, and increased knowledge of the disease - were related to better treatment adherence. CONCLUSION: Owing to the heterogeneity of the study results, we consider that the use of more than one method to assess adherence/persistence should yield more comprehensive and accurate data about patient adherence behavior. Patient-related factors should be included and analyzed more often in adherence studies as the former may be modified to improve patient adherence.

19.
J Chromatogr A ; 1564: 199-206, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29910088

RESUMO

A targeted CE-MS approach was developed for the chiral analysis of biologically relevant amino acids in artificial cerebrospinal fluid (aCSF). In order to achieve chiral resolution, the five amino acids (Ser, Asn, Asp, Gln and Glu) were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC). The diastereoselectivity was found to be highly dependent on pH for all analytes and the optimized background electrolyte (BGE) consisted of 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Furthermore, a reversal of the migration order of Asp derivatives was observed. This phenomenon seems to be caused by intra-molecular interactions affecting the pKa of the second ionizable group (the side chain carboxyl). The applicability of this method was evaluated using aCSF. A solid phase extraction (SPE) protocol was developed for the selective extraction of the FLEC derivatives. A full evaluation of the matrix effect and extraction yield was performed concluding that the matrix effect is marginal and the recoveries are between 46 and 92%. The method offers adequate sensitivity (limits of detection below 1 µM).


Assuntos
Aminoácidos/química , Líquido Cefalorraquidiano/metabolismo , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica , Eletrólitos/química , Concentração de Íons de Hidrogênio , Extração em Fase Sólida , Estereoisomerismo
20.
Anal Bioanal Chem ; 410(18): 4495-4507, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736701

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominantly inherited degenerative disease with a slow progression. At the present, there is no commercially available treatment, but sustained effort is currently undertaken for the development of a promising lead compound. In the present paper we report the development of a fast, versatile, and cost-effective affinity capillary electrophoresis (ACE) method for the screening and identification of potential drug candidates targeting pathological ARN probes relevant for DM1. The affinity studies were conducted in physiologically relevant conditions using 50 mM HEPES buffer (pH 7.4) in a fused silica capillary dynamically coated with poly(ethylene oxide), by testing a library of potential ligands against (CUG)50 RNA as target probe with a total run time of 4-5 h/ligand. For the most promising ligands, their affinity parameters were assessed and some results formerly reported on the affinity of pentamidine (PTMD) and neomycin against CUG repeats were confirmed. To the best of the authors' knowledge, the estimated binding stoichiometry for some of the tested compounds (i.e., ~ 121:1 for PTMD against the tested RNA probe) is reported for the first time. Additionally, the potential of a novel pentamidine like compound, namely 1,2-ethane bis-1-amino-4-benzamidine (EBAB) with much lower in vivo toxicity than its parent compound has also been confirmed studying its effect on a live cell model by fluorescence microscopy. Further tests, such as the evaluation of the rescue in the mis-splicing of the involved genes, can be performed to corroborate the potential therapeutic value of EBAB in DM1 treatment. Graphical abstract ᅟ.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Distrofia Miotônica/tratamento farmacológico , Benzamidinas/química , Benzamidinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/economia , Eletroforese Capilar/economia , Células HeLa , Humanos , Ligantes , Pentamidina/química , Pentamidina/farmacologia , Motivos de Ligação ao RNA/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA