Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 64(8): 903-908, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32720693

RESUMO

Semi-volatile organic compounds (SVOCs), partitioned between particulates and vapours of an aerosol, require special attention. The toxicological effects caused by the inhalation of such aerosols may depend on the concentration and in which phase the organic compounds are found. A personal denuder-gas-particle separation aerosol sampler was developed to provide information about the partitioning of aerosols from organic compounds. The sampler was tested in a series of controlled laboratory experiments, which confirmed the capability and accuracy of the sampler to measure gas-particle mixtures. An average difference of 14.8 ± 4.8% was found between sampler and reference laboratory instruments. The obtained results showed that our sampler enables a more accurate measurement of the SVOC aerosols' gas-particle fractionation, compared with that of conventional samplers.


Assuntos
Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Monitoramento Ambiental , Exposição Ocupacional/análise , Tamanho da Partícula , Local de Trabalho
3.
Anal Bioanal Chem ; 407(20): 5911-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711989

RESUMO

In this study, we produced a class of diffusion flame soot particles with varying chemical and physical properties by using the mini-Combustion Aerosol STandard (CAST) and applying varying oxidant gas flow rates under constant propane, quenching, and dilution gas supply. We varied the soot properties by using the following fuel-to-air equivalence ratios (Φ): 1.13, 1.09, 1.04, 1.00, 0.96, and 0.89. Within this Φ range, we observed drastic changes in the physical and chemical properties of the soot. Oxidant-rich flames (Φ < 1) were characterized by larger particle size, lower particle number concentration, higher black carbon (BC) concentration, lower brown carbon BrC.[BC](-1) than fuel-rich flames (Φ > 1). To investigate the polycyclic aromatic hydrocarbons (PAH) formation online, we developed a new method for quantification by using the one (13)C-containing doubly charged PAH ion in a high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). The time-resolved concentration showed that the larger PAHs prevailed in the fuel-rich flames and diminished in the oxidant-rich flames. By comparison with the offline in situ derivatization-thermal-desorption gas-chromatography time-of-flight mass spectrometry (IDTD-GC-ToF-MS), we found that the concentration by using the HR-ToF-AMS was underestimated, especially for lower mass PAHs (C14-C18) in the fuel-rich flames possibly due to size limitation and degradation of semi-volatile species under high vacuum and desorption temperature in the latter. For oxidant-rich flames, the large PAHs (C20 and C22) were detected in the HR-ToF-AMS while it was not possible in IDTD-GC-ToF-MS due to matrix effect. The PAH formation was discussed based on the combination of our results and with respect to Φ settings.


Assuntos
Poluentes Atmosféricos/análise , Incineração/instrumentação , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/análise , Aerossóis/análise , Desenho de Equipamento , Espectrometria de Massas , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA