Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 83: 102647, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272237

RESUMO

Dermatological diagnosis automation is essential in addressing the high prevalence of skin diseases and critical shortage of dermatologists. Despite approaching expert-level diagnosis performance, convolutional neural network (ConvNet) adoption in clinical practice is impeded by their limited explainability, and by subjective, expensive explainability validations. We introduce DermX, an end-to-end framework for explainable automated dermatological diagnosis. DermX is a clinically-inspired explainable dermatological diagnosis ConvNet, trained using DermXDB, a 554 image dataset annotated by eight dermatologists with diagnoses, supporting explanations, and explanation attention maps. DermX+ extends DermX with guided attention training for explanation attention maps. Both methods achieve near-expert diagnosis performance, with DermX, DermX+, and dermatologist F1 scores of 0.79, 0.79, and 0.87, respectively. We assess the explanation performance in terms of identification and localization by comparing model-selected with dermatologist-selected explanations, and gradient-weighted class-activation maps with dermatologist explanation maps, respectively. DermX obtained an identification F1 score of 0.77, while DermX+ obtained 0.79. The localization F1 score is 0.39 for DermX and 0.35 for DermX+. These results show that explainability does not necessarily come at the expense of predictive power, as our high-performance models provide expert-inspired explanations for their diagnoses without lowering their diagnosis performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34109324

RESUMO

Supervised learning algorithms trained on medical images will often fail to generalize across changes in acquisition parameters. Recent work in domain adaptation addresses this challenge and successfully leverages labeled data in a source domain to perform well on an unlabeled target domain. Inspired by recent work in semi-supervised learning we introduce a novel method to adapt from one source domain to n target domains (as long as there is paired data covering all domains). Our multi-domain adaptation method utilises a consistency loss combined with adversarial learning. We provide results on white matter lesion hyperintensity segmentation from brain MRIs using the MICCAI 2017 challenge data as the source domain and two target domains. The proposed method significantly outperforms other domain adaptation baselines.

3.
Med Phys ; 44(5): 2020-2036, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273355

RESUMO

PURPOSE: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms. METHODS: In this work, we describe and present the results of the Head and Neck Auto-Segmentation Challenge 2015, a satellite event at the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 conference. Six teams participated in a challenge to segment nine structures in the head and neck region of CT images: brainstem, mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. RESULTS: This paper presents the quantitative results of this challenge using multiple established error metrics and a well-defined ranking system. The strengths and weaknesses of the different auto-segmentation approaches are analyzed and discussed. CONCLUSIONS: The Head and Neck Auto-Segmentation Challenge 2015 was a good opportunity to assess the current state-of-the-art in segmentation of organs at risk for radiotherapy treatment. Participating teams had the possibility to compare their approaches to other methods under unbiased and standardized circumstances. The results demonstrate a clear tendency toward more general purpose and fewer structure-specific segmentation algorithms.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Cabeça , Humanos , Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA