Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 21(12): 1379-1387, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396961

RESUMO

In-sensor processing, which can reduce the energy and hardware burden for many machine vision applications, is currently lacking in state-of-the-art active pixel sensor (APS) technology. Photosensitive and semiconducting two-dimensional (2D) materials can bridge this technology gap by integrating image capture (sense) and image processing (compute) capabilities in a single device. Here, we introduce a 2D APS technology based on a monolayer MoS2 phototransistor array, where each pixel uses a single programmable phototransistor, leading to a substantial reduction in footprint (900 pixels in ∼0.09 cm2) and energy consumption (100s of fJ per pixel). By exploiting gate-tunable persistent photoconductivity, we achieve a responsivity of ∼3.6 × 107 A W-1, specific detectivity of ∼5.6 × 1013 Jones, spectral uniformity, a high dynamic range of ∼80 dB and in-sensor de-noising capabilities. Further, we demonstrate near-ideal yield and uniformity in photoresponse across the 2D APS array.


Assuntos
Processamento de Imagem Assistida por Computador , Molibdênio
2.
J Am Chem Soc ; 143(49): 20907-20915, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859675

RESUMO

Hydroformylation is an imperative chemical process traditionally catalyzed by homogeneous catalysts. Designing a heterogeneous catalyst with high activity and selectivity in hydroformylation is challenging but essential to allow the convenient separation and recycling of precious catalysts. Here, we report the development of an outstanding catalyst for efficient heterogeneous hydroformylation, RhZn intermetallic nanoparticles. In the hydroformylation of styrene, it shows three times higher turnover frequency (3090 h-1) compared to the benchmark homogeneous Wilkinson's catalyst (966 h-1), as well as a high chemoselectivity toward aldehyde products. RhZn is active for a variety of olefin substrates and can be recycled without a significant loss of activity. Density functional theory calculations show that the RhZn surfaces reduce the binding strength of reaction intermediates and have lower hydroformylation activation energy barriers compared to pure Rh(111), leading to more favorable reaction energetics on RhZn. The calculations also predict potential catalyst design strategies to achieve high regioselectivity.

3.
Angew Chem Int Ed Engl ; 60(33): 18309-18317, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34114306

RESUMO

Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd-based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3 Sn2 phase. Instead, using a thermal quenching method, we prepared a pure-phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,ß-unsaturated aldehydes, highest in reported Pd-based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn- to Pd3 Sn2 -structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA