Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomaterials ; 247: 119998, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251928

RESUMO

Many skeletal tissue regenerative strategies centre around the multifunctional properties of bone marrow derived stromal cells (BMSC) or mesenchymal stem/stromal cells (MSC)/bone marrow derived skeletal stem cells (SSC). Specific identification of these particular stem cells has been inconclusive. However, enriching these heterogeneous bone marrow cell populations with characterised skeletal progenitor markers has been a contributing factor in successful skeletal bone regeneration and repair strategies. In the current studies we have isolated, characterised and enriched ovine bone marrow mesenchymal stromal cells (oBMSCs) using a specific antibody, Stro-4, examined their multipotential differentiation capacity and, in translational studies combined Stro-4+ oBMSCs with a bovine extracellular matrix (bECM) hydrogel and a biocompatible melt electro-written medical-grade polycaprolactone scaffold, and tested their bone regenerative capacity in a small in vivo, highly vascularised, chick chorioallantoic membrane (CAM) model and a preclinical, critical-sized ovine segmental tibial defect model. Proliferation rates and CFU-F formation were similar between unselected and Stro-4+ oBMSCs. Col1A1, Col2A1, mSOX-9, PPARG gene expression were upregulated in respective osteogenic, chondrogenic and adipogenic culture conditions compared to basal conditions with no significant difference between Stro-4+ and unselected oBMSCs. In contrast, proteoglycan expression, alkaline phosphatase activity and adipogenesis were significantly upregulated in the Stro-4+ cells. Furthermore, with extended cultures, the oBMSCs had a predisposition to maintain a strong chondrogenic phenotype. In the CAM model Stro-4+ oBMSCs/bECM hydrogel was able to induce bone formation at a femur fracture site compared to bECM hydrogel and control blank defect alone. Translational studies in a critical-sized ovine tibial defect showed autograft samples contained significantly more bone, (4250.63 mm3, SD = 1485.57) than blank (1045.29 mm3, SD = 219.68) ECM-hydrogel (1152.58 mm3, SD = 191.95) and Stro-4+/ECM-hydrogel (1127.95 mm3, SD = 166.44) groups. Stro-4+ oBMSCs demonstrated a potential to aid bone repair in vitro and in a small in vivo bone defect model using select scaffolds. However, critically, translation to a large related preclinical model demonstrated the complexities of bringing small scale reported stem-cell material therapies to a clinically relevant model and thus facilitate progression to the clinic.


Assuntos
Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Bovinos , Diferenciação Celular , Células Cultivadas , Matriz Extracelular , Hidrogéis , Osteogênese , Poliésteres , Ovinos
2.
Aging Clin Exp Res ; 32(4): 547-560, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32170710

RESUMO

Osteoarthritis (OA) is the most common joint condition and, with a burgeoning ageing population, is due to increase in prevalence. Beyond conventional medical and surgical interventions, there are an increasing number of 'alternative' therapies. These alternative therapies may have a limited evidence base and, for this reason, are often only afforded brief reference (or completely excluded) from current OA guidelines. Thus, the aim of this review was to synthesize the current evidence regarding autologous chondrocyte implantation (ACI), mesenchymal stem cell (MSC) therapy, platelet-rich plasma (PRP), vitamin D and other alternative therapies. The majority of studies were in knee OA or chondral defects. Matrix-assisted ACI has demonstrated exceedingly limited, symptomatic improvements in the treatment of cartilage defects of the knee and is not supported for the treatment of knee OA. There is some evidence to suggest symptomatic improvement with MSC injection in knee OA, with the suggestion of minimal structural improvement demonstrated on MRI and there are positive signals that PRP may also lead to symptomatic improvement, though variation in preparation makes inter-study comparison difficult. There is variability in findings with vitamin D supplementation in OA, and the only recommendation which can be made, at this time, is for replacement when vitamin D is deplete. Other alternative therapies reviewed have some evidence (though from small, poor-quality studies) to support improvement in symptoms and again there is often a wide variation in dosage and regimens. For all these therapeutic modalities, although controlled studies have been undertaken to evaluate effectiveness in OA, these have often been of small size, limited statistical power, uncertain blindness and using various methodologies. These deficiencies must leave the question as to whether they have been validated as effective therapies in OA (or chondral defects). The conclusions of this review are that all alternative interventions definitely require clinical trials with robust methodology, to assess their efficacy and safety in the treatment of OA beyond contextual and placebo effects.


Assuntos
Terapias Complementares/métodos , Osteoartrite do Joelho/terapia , Fatores Etários , Condrócitos/transplante , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Transplante Autólogo/métodos , Resultado do Tratamento , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico
3.
Mater Today Bio ; 4: 100028, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31853520

RESUMO

Free-form printing offers a novel biofabrication approach to generate complex shapes by depositing hydrogel materials within a temporary supportive environment. However, printed hydrogels typically lack the requisite mechanical properties and functionality of the desired tissue, limiting application and, more importantly, safety and efficacy of the implant. The study authors have developed an innovative nanoclay-based bioink to print high shape fidelity functional constructs for potential skeletal application. Laponite® (LAP) nanoclay was combined with gellan gum (GG) to generate a printable hydrogel that was highly stable in vitro, displayed limited swelling ability compared with the silicate-free control and remained stable over time. An agarose fluid gel was found to provide the requisite support for the deposition of the material ink and preservation of the printed structure before crosslinking. Printed C2C12 myoblasts remained viable and displayed extensive proliferation over 21 days in culture. Cell-laden scaffolds demonstrated functionality within 1 day of culture in vitro and that was preserved over 3 weeks. Analysis of absorption and release mechanisms from LAP-GG using model proteins (lysozyme and bovine serum albumin) demonstrated the retention capability of the clay-based materials for compound localisation and absence of burst release. Vascular endothelial growth factor â€‹was loaded within the agarose fluid gel and absorbed by the material ink via absorption during deposition. The 3D-printed constructs were implanted on the chorioallantoic membrane of a 10-day-old developing chick. Extensive and preferential vasculature infiltration was observed in LAP-GG-loaded vascular endothelial growth factor constructs compared with controls (p<0.01 and p<0.0001) after only 7 days of incubation. The current studies demonstrate, for the first time, the application of innovative LAP-GG 3D constructs in the generation of growth factor-loaded 3D constructs for potential application in skeletal tissue repair.

4.
Biomaterials ; 209: 10-24, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022557

RESUMO

Recent advances in regenerative medicine have confirmed the potential to manufacture viable and effective tissue engineering 3D constructs comprising living cells for tissue repair and augmentation. Cell printing has shown promising potential in cell patterning in a number of studies enabling stem cells to be precisely deposited as a blueprint for tissue regeneration guidance. Such manufacturing techniques, however, face a number of challenges including; (i) post-printing cell damage, (ii) proliferation impairment and, (iii) poor or excessive final cell density deposition. The use of hydrogels offers one approach to address these issues given the ability to tune these biomaterials and subsequent application as vectors capable of delivering cell populations and as extrusion pastes. While stem cell-laden hydrogel 3D constructs have been widely established in vitro, clinical relevance, evidenced by in vivo long-term efficacy and clinical application, remains to be demonstrated. This review explores the central features of cell printing, cell-hydrogel properties and cell-biomaterial interactions together with the current advances and challenges in stem cell printing. A key focus is the translational hurdles to clinical application and how in vivo research can reshape and inform cell printing applications for an ageing population.


Assuntos
Bioimpressão/métodos , Osso e Ossos/fisiologia , Tinta , Medicina Regenerativa , Células-Tronco/citologia , Osso e Ossos/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual
5.
Sci Rep ; 8(1): 3635, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483527

RESUMO

Studies suggest bone growth and development are influenced by maternal nutrition, during intrauterine and early postnatal life. This study assessed the role of MGP and a maternal high fat diet on vitamin K-dependent proteins' gene expression and their impact on bone formation. Knockout (KO) offspring were smaller than wild type (WT) littermates, yet possessed the same volume of intrascapular brown adipose tissue. The total proportion of body fat was reduced, but only in animals on a control diet. Lung air volume was observed to be comparable in both KO and WT animals on the same diet. The degree of aortic calcification was reduced in KO animals maintained on a HF diet. KO females on the high fat diet showed reduced cortical bone volume and thickness in the femur and tibia. Gene expression levels of GGCX and VKOR were reduced in control fed KO animals suggesting a potential link between gene expression levels of MGP, GGCX, and VKOR and total volumes of bone, calcified soft tissue, and iBAT; with implications for modulation of body length and mass. Our results confirm the important role for vitamin K in bone and calcified soft tissue, but now extend this role to include iBAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Composição Corporal/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas da Matriz Extracelular/metabolismo , Animais , Composição Corporal/genética , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Feminino , Fêmur/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Tíbia/metabolismo , Vitamina K/metabolismo , Proteína de Matriz Gla
6.
J Child Orthop ; 11(6): 440-447, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263756

RESUMO

Purpose: To determine the prevalence of osteonecrosis (ON) in children following treatment of acute lymphoblastic leukaemia (ALL), characterise these cases and review treatment methods. Methods: All children diagnosed and treated for ALL between 01 January 2003 and 31 December 2013 at our centre were retrospectively reviewed. Logistic regression was used to investigate risk factors for ON occurrence. Results: Of 235 children treated for ALL, 48/235 (20.4%) children suffered musculoskeletal symptoms necessitating radiological investigation. A total of 13 (5.5%) had MRI-diagnosed ON, with a median diagnosis time of 12 months (interquartile range 10 to 14) following initiation of chemotherapy.ON affected 40 joints in 13 children. The most commonly involved joints were hips (14 joints in eight patients) and knees (12 joints in seven patients).Older age at ALL diagnosis was associated with significantly increased risk of development of ON per year (odds ratio 1.35, 95% confidence interval 1.17 to 1.57, p < 0.001).Eight children underwent at least one surgical intervention. Joint arthroplasty was undertaken in nine joints of four children at a mean age of 18.3 years. All patients who underwent hip arthroplasty had previously received core decompression, with a mean time of 27.8 months (18 to 33) between treatments. Conclusions: ON is a significant complication of ALL treatment. Our results suggest risk stratification for development of ON by age, and targeted monitoring of high-risk joints is possible. ON treatment is varied with little evidence base.

7.
J Mech Behav Biomed Mater ; 75: 399-412, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803114

RESUMO

The influence of ageing on the fracture mechanics of cortical bone tissue is well documented, though little is known about if and how related material properties are further affected in two of the most prominent musculoskeletal diseases, osteoporosis and osteoarthritis (OA). The femoral neck, in close proximity to the most pertinent osteoporotic fracture site and near the hip joint affected by osteoarthritis, is a site of particular interest for investigation. We have recently shown that Reference Point micro-Indentation (RPI) detects differences between cortical bone from the femoral neck of healthy, osteoporotic fractured and osteoarthritic hip replacement patients. RPI is a new technique with potential for in vivo bone quality assessment. However, interpretation of RPI results is limited because the specific changes in bone properties with pathology are not well understood and, further, because it is not conclusive what properties are being assessed by RPI. Here, we investigate whether the differences previously detected between healthy and diseased cortical bone from the femoral neck might reflect changes in fracture toughness. Together with this, we investigate which additional properties are reflected in RPI measures. RPI (using the Biodent device) and fracture toughness tests were conducted on samples from the inferomedial neck of bone resected from donors with: OA (41 samples from 15 donors), osteoporosis (48 samples from 14 donors) and non age-matched cadaveric controls (37 samples from 10 donoros) with no history of bone disease. Further, a subset of indented samples were imaged using micro-computed tomography (3 osteoporotic and 4 control samples each from different donors) as well as fluorescence microscopy in combination with serial sectioning after basic fuchsin staining (7 osteoporotic and 5 control samples from 5 osteoporotic and 5 control donors). In this study, the bulk indentation and fracture resistance properties of the inferomedial femoral neck in osteoporotic fracture, severe OA and control bone were comparable (p > 0.05 for fracture properties and <10% difference for indentation) but fracture toughness reduced with advancing age (7.0% per decade, r = -0.36, p = 0.029). Further, RPI properties (in particular, the indentation distance increase, IDI) showed partial correlation with fracture toughness (r = -0.40, p = 0.023) or derived elastic modulus (r = -0.40, p = 0.023). Multimodal indent imaging revealed evidence of toughening mechanisms (i.e. crack deflection, bridging and microcracking), elastoplastic response (in terms of the non-conical imprint shape and presence of pile-up) and correlation of RPI with damage extent (up to r = 0.79, p = 0.034) and indent size (up to r = 0.82, p < 0.001). Therefore, crack resistance, deformation resistance and, additionally, micro-structure (porosity: r = 0.93, p = 0.002 as well as pore proximity: r = -0.55, p = 0.027 for correlation with IDI) are all contributory to RPI. Consequently, it becomes clear that RPI measures represent a multitude of properties, various aspects of bone quality, but are not necessarily strongly correlated to a single mechanical property. In addition, osteoporosis or osteoarthritis do not seem to further influence fracture toughness of the inferomedial femoral neck beyond natural ageing. Since bone is highly heterogeneous, whether this finding can be extended to the whole femoral neck or whether it also holds true for other femoral neck quadrants or other material properties remains to be shown.


Assuntos
Fatores Etários , Colo do Fêmur/patologia , Fraturas Ósseas/patologia , Osteoporose/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Fêmur , Humanos , Masculino , Pessoa de Meia-Idade , Microtomografia por Raio-X
8.
Biofabrication ; 9(3): 034103, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28691691

RESUMO

Three-dimensional printing of cell-laden hydrogels has evolved as a promising approach on the route to patient-specific or complex tissue-engineered constructs. However, it is still challenging to print structures with both, high shape fidelity and cell vitality. Herein, we used a synthetic nanosilicate clay, called Laponite, to build up scaffolds utilising the extrusion-based method 3D plotting. By blending with alginate and methylcellulose, a bioink was developed which allowed easy extrusion, achieving scaffolds with high printing fidelity. Following extrusion, approximately 70%-75% of printed immortalised human mesenchymal stem cells survived and cell viability was maintained over 21 days within the plotted constructs. Mechanical properties of scaffolds comprised of the composite bioink decreased over time when stored under cell culture conditions. Nevertheless, shape of the plotted constructs was preserved even over longer cultivation periods. Laponite is known for its favourable drug delivery properties. Two model proteins, bovine serum albumin and vascular endothelial growth factor were loaded into the bioink. We demonstrate that the release of both growth factors significantly changed to a more sustained profile by inclusion of Laponite in comparison to an alginate-methylcellulose blend in the absence of Laponite. In summary, addition of a synthetic clay, Laponite, improved printability, increased shape fidelity and was beneficial for controlled release of biologically active agents such as growth factors.


Assuntos
Silicatos de Alumínio/farmacologia , Bioimpressão/métodos , Osso e Ossos/efeitos dos fármacos , Tinta , Impressão Tridimensional , Alginatos/química , Sobrevivência Celular/efeitos dos fármacos , Argila , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Cinética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metilcelulose/química , Reologia , Soroalbumina Bovina/metabolismo , Espectrometria por Raios X , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Osteoarthritis Cartilage ; 24(11): 1951-1960, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27307355

RESUMO

OBJECTIVE: To examine the methylation profile of the nuclear factor (NF)-κB enhancer region at -5.8 kb of inducible nitric oxide synthase (iNOS) and the subsequent role in the induction of osteoarthritis (OA) via cell cycle regulation. METHODS: Percentage methylation was determined by pyrosequencing, gene expression by qRT-PCR and cell proliferation was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Transient transfections were induced to determine the effect of the NF-κB enhancer region on cell proliferation and the influence of DNA methylation. RESULTS: In vitro de-methylation with 5-aza-dC showed decreased levels of DNA methylation at CpG sites localised at -5.8 kb, which correlated with higher levels of iNOS expression. In vitro methylation of the NF-κB enhancer region at -5.8 kb increased the percentage of cells at G0/G1 cell cycle phase. Loss of methylation within this region correlated with, enhanced proliferation and increased number of cells at G2/M phase. OA chondrocytes demonstrated up-regulation of the G0/G1 cell cycle progression markers Cyclin D1 and CDK6 in contrast to control cells. We demonstrate the loss of methylation that occurs at specific CpG sites localised at the -5.8 kb NF-κB enhancer region of the iNOS gene in OA chondrocytes permits the binding of this transcription factor activating the expression of iNOS. This results in subsequent altered cell cycle regulation, altered proliferative phenotype and transmission of the pathogenic phenotype to daughter cells. CONCLUSIONS: This study indicates that inhibition of cell cycle progression by iNOS enhancer hypermethylation is capable of reducing pro-inflammatory responses via down-regulation of NF-κB with important therapeutic implications in OA.


Assuntos
Osteoartrite , Ciclo Celular , Condrócitos , Desmetilação , Elementos Facilitadores Genéticos , Humanos , NF-kappa B
10.
Biomaterials ; 99: 16-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27209259

RESUMO

Bone Morphogenic Protein 2 (BMP2) can induce ectopic bone. This ability, which first motivated the widespread application of BMP2 in fracture healing and spinal arthrodesis has, more recently, been indicated as one of several serious adverse effects associated with the supra-physiological doses of BMP2 relied upon for clinical efficacy. Key to harnessing BMPs and other agents safely and effectively will be the ability to localize activity at a target site at substantially reduced doses. Clay (Laponite) nanoparticles can self assemble into gels under physiological conditions and bind growth factors for enhanced and localized efficacy. Here we show the ability to localize and enhance the activity of BMP2 to achieve ectopic bone formation at doses within the sub-microgram per ml range of concentrations sufficient to induce differentiation of responsive cell populations in vitro and at approximately 3000 fold lower than those employed in clinical practice.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 2/química , Osso e Ossos/efeitos dos fármacos , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Silicatos/química , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Diferenciação Celular , Linhagem Celular , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis , Humanos , Camundongos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
11.
Osteoarthritis Cartilage ; 23(11): 1946-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26521741

RESUMO

OBJECTIVE: To determine whether altered IL8 methylation status is associated with increased expression of IL8 in human osteoarthritic (OA) chondrocytes. METHODS: IL8 expression levels and the percentage CpG methylation in human chondrocytes were quantified by qRT-PCR and pyrosequencing in OA patients and in non-OA osteoporotic controls. The effect of CpG methylation on IL8 promoter activity was determined using a CpG-free vector; co-transfections with expression vectors encoding nuclear factor-kappa B (NF-κB), AP-1 and C/EBP were subsequently undertaken to analyse for IL8 promoter activity in response to changes in methylation status. RESULTS: IL8 expression in OA patients was 37-fold higher than in osteoporotic controls. Three CpG sites in the IL8 promoter were significantly demethylated in OA patients. Multiple regression analysis revealed that the degree of methylation of the CpG site located at -116-bp was the strongest predictor of IL8 expression. In vitro DNA methylation was noted to decrease IL8 promoter basal activity. Furthermore, NF-κB, AP-1 and C/EBP strongly enhanced IL8 promoter activity whilst DNA methylation inhibited the effects of these three transcription factors. CONCLUSIONS: The present study demonstrates the key role of DNA methylation status on the expression of IL8 in human chondrocytes. We demonstrate a quantitative relationship between percentage methylation and gene expression within clinical samples. These studies provide direct evidence linking the activation of IL8, DNA demethylation and the induction of the OA process with important therapeutic implications therein for patients with this debilitating disease.


Assuntos
Quimiocinas/genética , Condrócitos/metabolismo , DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , Interleucina-8/genética , Osteoartrite/genética , Adulto , Idoso , Células Cultivadas , Quimiocinas/biossíntese , Condrócitos/patologia , Metilação de DNA , Feminino , Humanos , Interleucina-8/biossíntese , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/patologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real
12.
Phys Chem Chem Phys ; 17(32): 20574-9, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26200694

RESUMO

In the absence of sufficient cleaning of medical instruments, contamination and infection can result in serious consequences for the health sector and remains a significant unmet challenge. In this paper we describe a novel cleaning system reliant on cavitation action created in a free flowing fluid stream where ultrasonic transmission to a surface, through the stream, is achieved using careful design and control of the device architecture, sound field and the materials employed. Cleaning was achieved with purified water at room temperature, moderate fluid flow rates and without the need for chemical additives or the high power consumption associated with conventional strategies. This study illustrates the potential in harnessing an ultrasonically activated stream to remove biological contamination including brain tissue from surgical stainless steel substrates, S. epidermidis biofilms from glass, and fat/soft tissue matter from bone structures with considerable basic and clinical applications.


Assuntos
Biofilmes , Encéfalo/metabolismo , Proteínas/metabolismo , Staphylococcus epidermidis/metabolismo , Ultrassom , Água/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/química , Aço Inoxidável/química , Temperatura , Água/química
13.
J Mech Behav Biomed Mater ; 46: 292-304, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25837158

RESUMO

Reference Point Indentation (RPI) has been proposed as a new clinical tool to aid the diagnosis of Osteoporosis. This study has examined the performance of the tool within entire femurs to improve the understanding of the mechanical properties of bone and also to guide future RPI testing to optimize repeatability of results obtained using the technique. Human, bovine, porcine and rat femurs were indented along three longitudinal axes: anterior and posterior: medial and lateral as well as around the circumference of the femoral head and neck. Cortical and subchondral bone thickness was measured using CT and radiography. The study shows that in some samples, bone is too thin to support the high loads applied with the technique and in these cases, RPI values are highly influenced by thickness. The technique will be useful in the mid-shaft region where cortical thickness is greatest, providing previously established guidelines are followed to optimize measurement repeatability, including performing multiple measurements per sample and investigating multiple samples. The study has also provided evidence that RPI values vary significantly with test site, hence mechanical properties should not be inferred from RPI findings alone away from the test site, even within the same bone. In conclusion, RPI appears to be a useful tool for scientific investigation; however further work is required to examine the feasibility of using RPI for assessing differences between healthy and diseased bone in a clinical setting.


Assuntos
Fêmur , Teste de Materiais/métodos , Fenômenos Mecânicos , Idoso , Idoso de 80 Anos ou mais , Animais , Bovinos , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico , Ratos , Microtomografia por Raio-X
14.
J Mech Behav Biomed Mater ; 42: 311-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25455607

RESUMO

Reference Point Indentation (RPI) is a novel microindentation tool that has emerging clinical potential for the assessment of fracture risk as well as use as a laboratory tool for straight-forward mechanical characterisation of bone. Despite increasing use of the tool, little research is available to advise the set-up of testing protocols or optimisation of testing parameters. Here we consider five such parameters: maximum load, sample orientation, mode of use, sample preparation and measurement spacing, to investigate how they affect the Indentation Distance Increase (IDI), the most published measurement parameter associated with the RPI device. The RPI tool was applied to bovine bone; indenting in the proximal midshaft of five femora and human bone; indenting five femoral heads and five femoral neck samples. Based on the findings of these studies we recommend the following as the best practice. (1) Repeat measurements should be utilised to reduce the coefficient of variation (e.g. 8-15 repeats to achieve a 5-10% error, however the 3-5 measurements used here gives a 15-20% error). (2) IDI is dependent on maximum load (r=0.45 on the periosteal surface and r=0.94 on the machined surface, p<0.05), mode of use (i.e. comparing the device held freehand compared to fixed in its stand, p=0.04) and surface preparation (p=0.004) so these should be kept consistent throughout testing. Though sample orientation appears to have minimal influence on IDI (p>0.05), care should also be taken in combining measurements from different orientations. (3) The coefficient of variation is higher (p=0.04) when holding the device freehand, so it should ideally be kept supported in its stand. (4) Removing the periosteum (p=0.04) and machining the surface of the bone (p=0.08) reduces the coefficient of variation, so should be performed where practical. (5) There is a hyperbolic relationship between thickness and IDI (p<0.001) with a sample thickness 10 fold greater than the maximum indentation depth recommended, to ensure a representative measurement. (6) Measurement spacing does not appear to influence the IDI (p>0.05), so it can be as low as 500 µm. By following these recommendations, RPI users can minimise the potential confounding effects associated with the variables investigated here and reduce the coefficient of variation, hence achieving more consistent testing. This optimisation of the technique enhances both the clinical and laboratory potential of the tool.


Assuntos
Fêmur/fisiologia , Teste de Materiais/normas , Fenômenos Mecânicos , Manejo de Espécimes , Idoso , Idoso de 80 Anos ou mais , Animais , Fenômenos Biomecânicos , Bovinos , Feminino , Humanos , Masculino , Padrões de Referência , Suporte de Carga
15.
J Tissue Eng Regen Med ; 9(2): 162-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23225773

RESUMO

Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations.


Assuntos
Osso e Ossos/citologia , Eletroforese/métodos , Células-Tronco/citologia , Antígenos de Superfície/metabolismo , Células da Medula Óssea/citologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Separação Celular , Citoplasma/metabolismo , Humanos , Luz , Osteócitos/citologia , Osteossarcoma/patologia
16.
Endocrinology ; 155(12): 4749-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25279792

RESUMO

Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.


Assuntos
Desenvolvimento Ósseo , Dieta Hiperlipídica , Osteocalcina/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Aorta/metabolismo , Composição Corporal , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fêmur/anatomia & histologia , Fêmur/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/crescimento & desenvolvimento , Proteína de Matriz Gla
17.
Eur Cell Mater ; 28: 166-207; discussion 207-8, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25284140

RESUMO

There is a growing socio-economic need for effective strategies to repair damaged bone resulting from disease, trauma and surgical intervention. Bone tissue engineering has received substantial investment over the last few decades as a result. A multitude of studies have sought to examine the efficacy of multiple growth factors, delivery systems and biomaterials within in vivo animal models for the repair of critical-sized bone defects. Defect repair requires recapitulation of in vivo signalling cascades, including osteogenesis, chondrogenesis and angiogenesis, in an orchestrated spatiotemporal manner. Strategies to drive parallel, synergistic and consecutive signalling of factors including BMP-2, BMP-7/OP-1, FGF, PDGF, PTH, PTHrP, TGF-ß3, VEGF and Wnts have demonstrated improved bone healing within animal models. Enhanced bone repair has also been demonstrated in the clinic following European Medicines Agency and Food and Drug Administration approval of BMP-2, BMP-7/OP-1, PDGF, PTH and PTHrP. The current review assesses the in vivo and clinical data surrounding the application of growth factors for bone regeneration. This review has examined data published between 1965 and 2013. All bone tissue engineering studies investigating in vivo response of the growth factors listed above, or combinations thereof, utilising animal models or human trials were included. All studies were compiled from PubMed-NCBI using search terms including 'growth factor name', 'in vivo', 'model/animal', 'human', and 'bone tissue engineering'. Focus is drawn to the in vivo success of osteoinductive growth factors incorporated within material implants both in animals and humans, and identifies the unmet challenges within the skeletal regenerative area.


Assuntos
Regeneração Óssea , Fatores de Diferenciação de Crescimento/metabolismo , Engenharia Tecidual/métodos , Animais , Ensaios Clínicos como Assunto , Fatores de Diferenciação de Crescimento/genética , Humanos , Alicerces Teciduais
18.
Acta Biomater ; 10(10): 4197-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24907660

RESUMO

There is an unmet need for improved, effective tissue engineering strategies to replace or repair bone damaged through disease or injury. Recent research has focused on developing biomaterial scaffolds capable of spatially and temporally releasing combinations of bioactive growth factors, rather than individual molecules, to recapitulate repair pathways present in vivo. We have developed an ex vivo embryonic chick femur critical size defect model and applied the model in the study of novel extracellular matrix (ECM) hydrogel scaffolds containing spatio-temporal combinatorial growth factor-releasing microparticles and skeletal stem cells for bone regeneration. Alginate/bovine bone ECM (bECM) hydrogels combined with poly(d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PLDLGA) microparticles releasing dual combinations of vascular endothelial growth factor (VEGF), chondrogenic transforming growth factor beta 3 (TGF-ß3) and the bone morphogenetic protein BMP2, with human adult Stro-1+bone marrow stromal cells (HBMSCs), were placed into 2mm central segmental defects in embryonic day 11 chick femurs and organotypically cultured. Hydrogels loaded with VEGF combinations induced host cell migration and type I collagen deposition. Combinations of TGF-ß3/BMP2, particularly with Stro-1+HBMSCs, induced significant formation of structured bone matrix, evidenced by increased Sirius red-stained matrix together with collagen expression demonstrating birefringent alignment within hydrogels. This study demonstrates the successful use of the chick femur organotypic culture system as a high-throughput test model for scaffold/cell/growth factor therapies in regenerative medicine. Temporal release of dual growth factors, combined with enriched Stro-1+HBMSCs, improved the formation of a highly structured bone matrix compared to single release modalities. These studies highlight the potential of a unique alginate/bECM hydrogel dual growth factor release platform for bone repair.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fêmur , Hidrogéis , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Alginatos/química , Alginatos/farmacologia , Animais , Células da Medula Óssea/citologia , Bovinos , Embrião de Galinha , Galinhas , Matriz Extracelular/química , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Modelos Biológicos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células Satélites de Músculo Esquelético/patologia , Células Estromais/citologia , Células Estromais/metabolismo
19.
Acta Biomater ; 10(10): 4186-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24937137

RESUMO

Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come to the fore, including the development of growth factor releasing technologies and appropriate animal models to evaluate repair. Ex vivo models represent a promising alternative to simple in vitro systems or complex, ethically challenging in vivo models. We have developed an ex vivo culture system of whole embryonic chick femora, adapted in this study as a critical size defect model to investigate the effects of novel bone extracellular matrix (bECM) hydrogel scaffolds containing spatio-temporal growth factor-releasing microparticles and skeletal stem cells on bone regeneration, to develop a viable alternative treatment for skeletal degeneration. Alginate/bECM hydrogels combined with poly (d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PDLLGA) microparticles releasing VEGF, TGF-ß3 or BMP-2 were placed, with human adult Stro-1+ bone marrow stromal cells, into 2mm central segmental defects in embryonic chick femurs. Alginate/bECM hydrogels loaded with HSA/VEGF or HSA/TGF-ß3 demonstrated a cartilage-like phenotype, with minimal collagen I deposition, comparable to HSA-only control hydrogels. The addition of BMP-2 releasing microparticles resulted in enhanced structured bone matrix formation, evidenced by increased Sirius red-stained matrix and collagen expression within hydrogels. This study demonstrates delivery of bioactive growth factors from a novel alginate/bECM hydrogel to augment skeletal tissue formation and the use of an organotypic chick femur defect culture system as a high-throughput test model for scaffold/cell/growth factor therapies for regenerative medicine.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea , Fêmur , Hidrogéis , Peptídeos e Proteínas de Sinalização Intercelular , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Alginatos/química , Alginatos/farmacologia , Animais , Células da Medula Óssea/patologia , Bovinos , Galinhas , Matriz Extracelular/química , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células Satélites de Músculo Esquelético/patologia , Células Estromais/metabolismo , Células Estromais/patologia
20.
Biotechnol Bioeng ; 111(9): 1876-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24668194

RESUMO

Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental-computational approach in a "scaffold-free" 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21-day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a "scaffold-free" 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Oxigênio/metabolismo , Células Cultivadas , Humanos , Modelos Teóricos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA