Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37296842

RESUMO

Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels' clinical relevance and well-known biomarkers' overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in influencing both the amount and the characteristics of the exosome released by tumor cells. In fact, acidity significantly increases exosome release by tumor cells, which correlates with the number of exosomes that circulate through the body of a tumor patient.

2.
Expert Opin Ther Pat ; 33(2): 89-100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36947052

RESUMO

INTRODUCTION: How can biotechnology and organic agriculture be fused and promoted simultaneously to overcome the main challenges in drug delivery systems. The role of organic agriculture in future human health treatment still represents a binary organic-conventional question. However, exosomes-like nanoparticles define a new organic path that plants and vegetables can release. In this review, we concisely propose plant-derived exosome-like nanovesicles and discuss their most important biological and pharmacological roles, representing a new tool for drug delivery. AREAS COVERED: Plant-derived exosomes-like nanovesicles; nature farming; green manufacturing practice; drug delivery; organic agriculture. EXPERT OPINION: There is growing interest in the potential use of plant-derived exosomes-like nanovesicles for various diagnostic and therapeutic applications that should translate into a supplement to current nano-pharmaceuticals. Despite their clinical potential, the lack of sensitive preparatory and analytical technologies for plant-derived exosomes-like nanovesicles poses a barrier to clinical translation. An increasing number of articles are recently published on new analytical platforms to address these challenges in cross-comparison with conventional assay methods. This review also mentions two patents from ExoLab-Italia on plant-derived exosome-like nanovesicles, respectively, on plant-derived exosome-like nanovesicles' ability to naturally deliver a series of potentially therapeutic molecules and a novel approach to upload them with therapeutic molecules.


Assuntos
Exossomos , Nanopartículas , Humanos , Patentes como Assunto , Sistemas de Liberação de Medicamentos
3.
Pharmaceutics ; 14(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336027

RESUMO

Extracellular vesicles (EVs) have been exploited as bio-inspired drug delivery systems (DDS) in the biomedical field. EVs have more advantages than synthetic nanoparticles: they are naturally equipped to cross extra- and intra-cellular barriers. Furthermore, they can deliver functional biomolecules from one cell to another even far away in the body. These advantages, along with obtained promising in vivo results, clearly evidenced the potential of EVs in drug delivery. Nevertheless, due to the difficulties of finding a chemical approach that is coherent with EVs' rational clinical therapeutic use, those in the drug delivery community are expecting more from EVs' use. Therefore, this review gathered knowledge of the current chemical approaches dealing with the conjugation of EVs for drugs and radiotracers.

4.
Brain ; 145(2): 500-516, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203088

RESUMO

N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder, suggesting that aberrant cytosolic-to-endoplasmic reticulum flux of acetyl-CoA can be a mechanistic driver for the development of autism spectrum disorder. We therefore generated a SLC25A1 neuron transgenic mouse with overexpression specifically in the forebrain neurons. The mice displayed autistic-like behaviours with a jumping stereotypy. They exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia and altered synaptic plasticity and morphology. Finally, quantitative proteomic and acetyl-proteomic analyses revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosolic-to-endoplasmic reticulum acetyl-CoA flux and the development of an autistic-like phenotype.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transportadores de Ânions Orgânicos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Ácido Cítrico , Humanos , Camundongos , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/genética , Fenótipo , Proteômica
5.
Brain Commun ; 4(1): fcac002, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35146426

RESUMO

Endoplasmic reticulum-based N ɛ-lysine acetylation serves as an important protein quality control system for the secretory pathway. Dysfunctional endoplasmic reticulum-based acetylation, as caused by overexpression of the acetyl coenzyme A transporter AT-1 in the mouse, results in altered glycoprotein flux through the secretory pathway and an autistic-like phenotype. AT-1 works in concert with SLC25A1, the citrate/malate antiporter in the mitochondria, SLC13A5, the plasma membrane sodium/citrate symporter and ATP citrate lyase, the cytosolic enzyme that converts citrate into acetyl coenzyme A. Here, we report that mice with neuron-specific overexpression of SLC13A5 exhibit autistic-like behaviours with a jumping stereotypy. The mice displayed disrupted white matter integrity and altered synaptic structure and function. Analysis of both the proteome and acetyl-proteome revealed unique adaptations in the hippocampus and cortex, highlighting a metabolic response that likely plays an important role in the SLC13A5 neuron transgenic phenotype. Overall, our results support a mechanistic link between aberrant intracellular citrate/acetyl coenzyme A flux and the development of an autistic-like phenotype.

6.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899898

RESUMO

Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs' stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.


Assuntos
Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Biomarcadores Tumorais/metabolismo , Comunicação Celular/genética , Micropartículas Derivadas de Células/metabolismo , Progressão da Doença , Exossomos/metabolismo , Humanos , MicroRNAs/farmacologia , Neoplasias/patologia , Prognóstico , Microambiente Tumoral/genética
7.
Anal Chem ; 92(20): 14021-14030, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32926775

RESUMO

Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.


Assuntos
Microbioma Gastrointestinal/fisiologia , Hipotálamo/metabolismo , Leucina/análogos & derivados , Leucina/química , Neuropeptídeos/metabolismo , Proteoma/metabolismo , Aminas/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteômica , Espectrometria de Massas em Tandem
8.
Pharmaceutics ; 12(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722622

RESUMO

Gene therapy is a therapeutic strategy of delivering foreign genetic material (encoding for an important protein) into a patient's target cell to replace a defective gene. Nucleic acids are embedded within the adeno-associated virus (AAVs) vectors; however, preexisting immunity to AAVs remains a significant concern that impairs their clinical application. Extracellular vesicles (EVs) hold great potential for therapeutic applications as vectors of nucleic acids due to their endogenous intercellular communication functions through their cargo delivery, including lipids and proteins. So far, small RNAs (siRNA and micro (mi)RNA) have been mainly loaded into EVs to treat several diseases, but the potential use of EVs to load and deliver exogenous plasmid DNA has not been thoroughly described. This review provides a comprehensive overview of the principal methodologies currently employed to load foreign genetic material into EVs, highlighting the need to find the most effective strategies for their successful clinical translations.

9.
Mol Ther Methods Clin Dev ; 14: 237-251, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31440523

RESUMO

Exosomes represent a strategy for optimizing the adeno-associated virus (AAV) toward the development of novel therapeutic options for neurodegenerative disorders. However, in vivo spreading of exosomes and AAVs after intracerebral administration is poorly understood. This study provides an assessment and comparison of the spreading into the brain of exosome-enveloped AAVs (exo-AAVs) or unassociated AAVs (std-AAVs) through in vivo optical imaging techniques like probe-based confocal laser endomicroscopy (pCLE) and ex vivo fluorescence microscopy. The std-AAV serotypes (AAV6 and AAV9) encoding the GFP were enveloped in exosomes and injected into the ipsilateral hippocampus. At 3 months post-injection, pCLE detected enhanced GFP expression of both exo-AAV serotypes in contralateral hemispheres compared to std-AAVs. Although sparse GFP-positive astrocytes were observed using exo-AAVs, our results show that the enhancement of the transgene expression resulting from exo-AAVs was largely restricted to neurons and oligodendrocytes. Our results suggest (1) the possibility of combining gene therapy with an endoscopic approach to enable tracking of exo-AAV spread, and (2) exo-AAVs allow for widespread, long-term gene expression in the CNS, supporting the use of exo-AAVs as an efficient gene delivery tool.

10.
Acta Neuropathol Commun ; 7(1): 46, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885273

RESUMO

Recent evidences suggest the involvement of DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1 A) in Alzheimer's disease (AD). Here we showed that DYRK1A undergoes a proteolytic processing in AD patients hippocampus without consequences on its kinase activity. Resulting truncated forms accumulate in astrocytes and exhibit increased affinity towards STAT3ɑ, a regulator of inflammatory process. These findings were confirmed in APP/PS1 mice, an amyloid model of AD, suggesting that this DYRK1A cleavage is a consequence of the amyloid pathology. We identified in vitro the Leucettine L41 as a compound able to prevent DYRK1A proteolysis in both human and mouse protein extracts. We then showed that intraperitoneal injections of L41 in aged APP/PS1 mice inhibit STAT3ɑ phosphorylation and reduce pro-inflammatory cytokines levels (IL1- ß, TNF-ɑ and IL-12) associated to an increased microglial recruitment around amyloid plaques and decreased amyloid-ß plaque burden. Importantly, L41 treatment improved synaptic plasticity and rescued memory functions in APP/PS1 mice. Collectively, our results suggest that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. Further evaluation of inhibitors of DYRK1A truncation promises a new therapeutic approach for AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Fenótipo , Presenilina-1/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteólise , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Hipocampo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
11.
Eur J Pharm Sci ; 62: 33-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24854456

RESUMO

N-Palmitoylethanolamide (PEA) is emerging as a novel therapeutic agent in the treatment of neuropathic pain and neurodegenerative diseases. Unfortunately, PEA poorly reaches the central nervous system (CNS), after peripheral administration, since it is inactivated through intracellular hydrolysis by lipid amidases. Since prodrug approach is one of the most popular methods used to increase cell permeability, the aim of this paper consists in the synthesis of a new galactosyl prodrug of PEA, the palmitoylethanolamide-succinamyl-D-galactos-6'-yl ester (PEAGAL). Biological experiments both in neuroblastoma and in C6 glioma cells, together with quantitative analyses performed through a LC-MS-MS technique, demonstrate the better efficacy of PEAGAL compared to PEA and its higher cell permeation. Our results encourage further experiments in animal models of neuropathic pain and of neurological disorders and/or neurodegenerative diseases, in order to promote a more effective peripherally administrated derivative of PEA.


Assuntos
Analgésicos/farmacologia , Galactose/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Palmitatos/farmacologia , Pró-Fármacos/farmacologia , Amidas , Analgésicos/síntese química , Analgésicos/química , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Estabilidade de Medicamentos , Etanolaminas/metabolismo , Galactose/síntese química , Galactose/química , Galactose/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Nitritos/metabolismo , Oxidopamina/toxicidade , Palmitatos/síntese química , Palmitatos/química , Ácidos Palmíticos/metabolismo , Permeabilidade/efeitos dos fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química
12.
Pharmacol Res ; 76: 67-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917217

RESUMO

Hypertension is an important risk factor for kidney failure and renal events in the general population. Palmitoylethanolamide (PEA) is a member of the fatty acid ethanolamine family with profound analgesic and anti-inflammatory effects, resulting from its ability to activate peroxisome proliferator activated receptor (PPAR)α. A role for this nuclear receptor has been addressed in cardiovascular system and PPARα ligands have been shown to protect against inflammatory damage especially resulting from angiotensin II hypertension. In this study, we demonstrated that PEA significantly reduced blood pressure in spontaneously hypertensive rats (SHR) and limited kidney damage secondary to high perfusion pressure. To investigate the mechanisms involved in PEA effect, we found that PEA reduced cytochrome P450 (CYP) hydroxylase CYP4A, epoxygenase CYP2C23 and soluble epoxide hydrolase enzyme expression in the kidney, accompanied by a reduction of 20-hydroxyeicosatetraenoic acid excretion in the urine. Moreover, it markedly reduced kidney oxidative and nitrosative stress accompanied by decreased expression of renal NAD(P)H oxidase and inducible nitric oxide synthase and increased expression of Cu/Zn superoxide dismutase, in the kidney of SHR. Moreover, angiotensin II receptor (AT) evaluation revealed a decrease in AT1 receptor expression and a restoration of AT2 receptor level in the kidney from PEA-treated SHR. Consistently, angiotensin converting enzyme expression was reduced, implying a decrease in angiotensin II synthesis. These results indicate that PEA treatment lowers blood pressure and can protect against hypertensive renal injury by increasing the antioxidant defense and anti-inflammatory response and modulating renin-angiotensin system.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Endocanabinoides/uso terapêutico , Etanolaminas/uso terapêutico , Hipertensão/complicações , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácidos Palmíticos/uso terapêutico , Insuficiência Renal/etiologia , Insuficiência Renal/prevenção & controle , Amidas , Analgésicos/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP4A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hipertensão/tratamento farmacológico , Rim/metabolismo , Rim/fisiopatologia , Masculino , PPAR alfa/agonistas , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Angiotensina/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/fisiopatologia , Sistema Renina-Angiotensina/efeitos dos fármacos
13.
J Neurol Sci ; 331(1-2): 172-3, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23778027

RESUMO

Glatiramer acetate (GA) is an approved and well tolerated drug for the treatment of relapsing-remitting multiple sclerosis. We report a case of a 52 year-old man with psoriasis and relapsing-remitting multiple sclerosis who developed, after 21 months of GA treatment, an injection-site cutaneous necrosis that involved both subcutaneous and muscular tissue with massive edema, followed, 3 days later, by radial nerve palsy. After few days another similar lesion appeared in another injection-site. We hypothesize that cutaneous necrosis could be due to a local dis-immune reaction and, probably, psoriasis could have played an important role in its pathogenesis.


Assuntos
Imunossupressores/efeitos adversos , Peptídeos/efeitos adversos , Neuropatia Radial/induzido quimicamente , Dermatopatias/induzido quimicamente , Acetato de Glatiramer , Humanos , Injeções Subcutâneas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA