Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3733, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740737

RESUMO

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry. Here we show that bristle formation requires a chitin-producing enzyme specifically expressed in the chaetoblasts. Chaetoblasts exhibit dynamic cell surfaces with stereotypical patterns of actin-rich microvilli. These microvilli can be matched with internal and external structures of bristles reconstructed from serial block-face electron micrographs. Individual chitin teeth are deposited by microvilli in an extension-disassembly cycle resembling a biological 3D printer. Consistently, pharmacological interference with actin dynamics leads to defects in tooth formation. Our study reveals that both material and shape of bristles are encoded by the same cell, and that microvilli play a role in micro- to submicrometric sculpting of biomaterials.


Assuntos
Quitina , Microvilosidades , Microvilosidades/ultraestrutura , Animais , Quitina/metabolismo , Quitina/química , Poliquetos/ultraestrutura , Actinas/metabolismo , Morfogênese
2.
Nat Commun ; 13(1): 5220, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064778

RESUMO

The moon's monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry's co-factor Flavin Adenine Dinucleotide. In Platynereis, L-Cry's sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a "valence interpreter" that provides entraining photoreceptor(s) with light source and moon phase information.


Assuntos
Criptocromos , Lua , Luz , Opsinas , Reprodução , Luz Solar
3.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697381

RESUMO

Mitochondria are fundamental for life and require balanced ion exchange to maintain proper functioning. The mitochondrial cation exchanger LETM1 sparks interest because of its pathophysiological role in seizures in the Wolf Hirschhorn Syndrome (WHS). Despite observation of sleep disorganization in epileptic WHS patients, and growing studies linking mitochondria and epilepsy to circadian rhythms, LETM1 has not been studied from the chronobiological perspective. Here we established a viable letm1 knock-out, using the diurnal vertebrate Danio rerio to study the metabolic and chronobiological consequences of letm1 deficiency. We report diurnal rhythms of Letm1 protein levels in wild-type fish. We show that mitochondrial nucleotide metabolism is deregulated in letm1-/- mutant fish, the rate-limiting enzyme of NAD+ production is up-regulated, while NAD+ and NADH pools are reduced. These changes were associated with increased expression amplitude of circadian core clock genes in letm1-/- compared with wild-type under light/dark conditions, suggesting decreased NAD(H) levels as a possible mechanism for circadian system perturbation in Letm1 deficiency. Replenishing NAD pool may ameliorate WHS-associated sleep and neurological disorders.


Assuntos
NAD , Síndrome de Wolf-Hirschhorn , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cátions , Ritmo Circadiano/genética , Proteínas de Membrana/metabolismo , NAD/metabolismo , Síndrome de Wolf-Hirschhorn/genética , Síndrome de Wolf-Hirschhorn/metabolismo , Peixe-Zebra
4.
Proc Natl Acad Sci U S A ; 119(22): e2115725119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622889

RESUMO

Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights' darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome's principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Lua , Poliquetos , Animais , Criptocromos/genética , Criptocromos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Poliquetos/genética , Poliquetos/fisiologia , Opsinas de Bastonetes/genética , Luz Solar
5.
Elife ; 102021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350831

RESUMO

Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.


Assuntos
Evolução Biológica , Mecanorreceptores/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Poliquetos/fisiologia , Animais , Evolução Molecular
6.
Int J Cancer ; 132(3): 521-30, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22733455

RESUMO

Metastasis is associated with poor prognosis for melanoma responsible for about 90% of skin cancer-related mortality. To metastasize, melanoma cells must escape keratinocyte control, invade across the basement membrane and survive in the dermis by resisting apoptosis before they can intravasate into the circulation. α-Catulin (CTNNAL1) is a cytoplasmic molecule that integrates the crosstalk between nuclear factor-kappa B and Rho signaling pathways, binds to ß-catenin and increases the level of both α-catenin and ß-catenin and therefore has potential effects on inflammation, apoptosis and cytoskeletal reorganization. Here, we show that α-catulin is highly expressed in melanoma cells. Expression of α-catulin promoted melanoma progression and occurred concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as N-cadherin, Snail/Slug and the matrix metalloproteinases 2 and 9. Knockdown of α-catulin promoted adhesion to and inhibited migration away from keratinocytes in an E-cadherin-dependent manner and decreased the transmigration through a keratinocyte monolayer, as well as in Transwell assays using collagens, laminin and fibronectin coating. Moreover, knockdown promoted homotypic spheroid formation and concomitantly increased E-cadherin expression along with downregulation of transcription factors implicated in its repression (Snail/Slug, Twist and ZEB). Consistent with the molecular changes, α-catulin provoked invasion of melanoma cells in a three-dimensional culture assay by the upregulation of matrix metalloproteinases 2 and 9 and the activation of ROCK/Rho. As such, α-catulin may represent a key driver of the metastatic process, implicating potential for therapeutic interference.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , alfa Catenina/metabolismo , Caderinas/biossíntese , Adesão Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Epiderme/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Melanócitos/metabolismo , Melanoma/genética , Melanoma/secundário , NF-kappa B/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Fatores de Transcrição da Família Snail , Esferoides Celulares , Fatores de Transcrição/biossíntese , Ativação Transcricional , Regulação para Cima , alfa Catenina/genética , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo
7.
J Cell Mol Med ; 14(6B): 1555-68, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19656241

RESUMO

A great variety of signalling pathways regulating inflammation, cell development and cell survival require NF-kappaB transcription factors, which are normally inactive due to binding to inhibitors, such as IkappaBalpha. The canonical activation pathway of NF-kappaB is initiated by phosphorylation of the inhibitor by an IkappaB kinase (IKK) complex triggering ubiquitination of IkappaB molecules by SCF-type E3-ligase complexes and rapid degradation by 26S-proteasomes. The ubiquitination machinery is regulated by the COP9 signalosome (CSN). We show that IkappaB kinases interact with the CSN-complex, as well as the SCF-ubiquitination machinery, providing an explanation for the rapid signalling-induced ubiquitination and degradation of IkappaBalpha. Furthermore, we reveal that IKK's phosphorylate not only IkappaBalpha, but also the CSN-subunit Csn5/JAB1 (c-Jun activation domain binding protein-1) and that IKK2 influences ubiquitination of Csn5/JAB1. Our observations imply that the CSN complex acts as an inhibitor of constitutive NF-kappaB activity in non-activated cells. Knock-down of Csn5/JAB1 clearly enhanced basal NF-kappaB activity and improved cell survival under stress. The inhibitory effect of Csn5/JAB1 requires a functional MPN(+) metalloprotease domain, which is responsible for cleaving ubiquitin-like Nedd8-modifications. Upon activation of cells with tumour necrosis factor-alpha, the CSN complex dissociates from IKK's allowing full and rapid activation of the NF-kappaB pathway by the concerted action of interacting protein complexes.


Assuntos
Quinase I-kappa B/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Apoptose , Complexo do Signalossomo COP9 , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ubiquitinação
8.
J Biol Chem ; 284(50): 34944-53, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19826004

RESUMO

Ubiquitinated proteins can alternatively be delivered directly to the proteasome or via p97/VCP (valosin-containing protein). Whereas the proteasome degrades ubiquitinated proteins, the homohexameric ATPase p97/VCP seems to control the ubiquitination status of recruited substrates. The COP9 signalosome (CSN) is also involved in the ubiquitin/proteasome system (UPS) as exemplified by regulating the neddylation of ubiquitin E3 ligases. Here, we show that p97/VCP colocalizes and directly interacts with subunit 5 of the CSN (CSN5) in vivo and is associated with the entire CSN complex in an ATP-dependent manner. Furthermore, we provide evidence that the CSN and in particular the isopeptidase activity of its subunit CSN5 as well as the associated deubiquitinase USP15 are required for proper processing of polyubiquitinated substrates bound to p97/VCP. Moreover, we show that in addition to NEDD8, CSN5 binds to oligoubiquitin chains in vitro. Therefore, CSN and p97/VCP could form an ATP-dependent complex that resembles the 19 S proteasome regulatory particle and serves as a key mediator between ubiquitination and degradation pathways.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Complexo do Signalossomo COP9 , Proteínas de Ciclo Celular/genética , Humanos , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Células NIH 3T3 , Peptídeo Hidrolases/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitinação , Proteína com Valosina
9.
Clin Cancer Res ; 14(22): 7196-204, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010836

RESUMO

PURPOSE: We explored the mechanisms leading to the distinct overexpression of EPOR as well as the effects of EPO signaling on ETV6/RUNX1-positive acute lymphoblastic leukemias. EXPERIMENTAL DESIGN: ETV6/RUNX1-expressing model cell lines and leukemic cells were used for real-time PCR of EPOR expression. Proliferation, viability, and apoptosis were analyzed on cells exposed to EPO, prednisone, or inhibitors of EPOR pathways by [3H]thymidine incorporation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Annexin V/propidium iodide staining. Western blot analysis was done to detect activation of signaling proteins. Serum EPO levels and sequences of the EPOR (n = 53) as well as hemoglobin levels were taken from children with acute lymphoblastic leukemia enrolled in Austrian protocols. RESULTS: We show here that ectopic expression of ETV6/RUNX1 induced EPOR up-regulation. Anemia, however, did not appear to influence EPOR expression on leukemic cells, although children with ETV6/RUNX1-positive leukemias had a lower median hemoglobin than controls. Exposure to EPO increased proliferation and survival of ETV6/RUNX1-positive leukemias in vitro, whereas blocking its binding site did not alter cell survival. The latter was not caused by activating mutations in the EPOR but might be triggered by constitutive activation of phosphatidylinositol 3-kinase/Akt, the major signaling pathway of EPOR in these cells. Moreover, prednisone-induced apoptosis was attenuated in the presence of EPO in this genetic subgroup. CONCLUSIONS: Our data suggest that ETV6/RUNX1 leads to EPOR up-regulation and that activation by EPO might be of relevance to the biology of this leukemia subtype. Further studies are, however, needed to assess the clinical implications of its apoptosis-modulating properties.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Eritropoetina/metabolismo , Citometria de Fluxo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prednisona/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
10.
Am J Pathol ; 172(1): 203-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18165268

RESUMO

MYCN amplification is associated with poor prognosis in neuroblastoma disease. To improve our understanding of the influence of the MYCN amplicon and its corresponding expression, we investigated the 2p expression pattern of MYCN amplified (n = 13) and nonamplified (n = 4) cell lines and corresponding primary tumors (n = 3) using the comparative expressed sequence hybridization technique. All but one MYCN amplified cell line displayed overexpression at 2p. Expression peaks were observed frequently at 2pter and less frequently at 2p24 (MYCN locus), 2p23.3-23.2, and/or 2p23.1. Importantly, cell lines and two corresponding primary tumors displayed expression peaks at similar loci. No significant 2p24 expression level was observed for those cell lines displaying a low amplification rate (n = 3) by comparative genomic hybridization. Only the cell lines with an enhanced peak at 2p23.2-23.3 displayed coamplification of the ALK gene (2p23.2), reported to be associated with unfavorable prognosis. Finally, two of four cell lines without MYCN amplification, both derived from patients with poor outcome, also showed an expression peak at 2p23.2. These data indicate that, besides MYCN, other genes proximal and distal to MYCN are highly expressed in neuroblastoma. The prognostic significance of expression peaks at 2p23.2-23.3, independent of MYCN and ALK status, remains to be investigated.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes myc , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Oncogênicas/biossíntese , Quinase do Linfoma Anaplásico , Criança , Pré-Escolar , Cromossomos Humanos Par 2/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Modelos Biológicos , Proteína Proto-Oncogênica N-Myc , Hibridização de Ácido Nucleico , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA