Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1886-1896, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721585

RESUMO

Recent advances in single-cell omics technology have transformed the landscape of cellular and molecular research, enriching the scope and intricacy of cellular characterisation. Perturbation modelling seeks to comprehensively grasp the effects of external influences like disease onset or molecular knock-outs or external stimulants on cellular physiology, specifically on transcription factors, signal transducers, biological pathways, and dynamic cell states. Machine and deep learning tools transform complex perturbational phenomena in algorithmically tractable tasks to formulate predictions based on various types of single-cell datasets. However, the recent surge in tools and datasets makes it challenging for experimental biologists and computational scientists to keep track of the recent advances in this rapidly expanding filed of single-cell modelling. Here, we recapitulate the main objectives of perturbation modelling and summarise novel single-cell perturbation technologies based on genetic manipulation like CRISPR or compounds, spanning across omic modalities. We then concisely review a burgeoning group of computational methods extending from classical statistical inference methodologies to various machine and deep learning architectures like shallow models or autoencoders, to biologically informed approaches based on gene regulatory networks, and to combinatorial efforts reminiscent of ensemble learning. We also discuss the rising trend of large foundational models in single-cell perturbation modelling inspired by large language models. Lastly, we critically assess the challenges that underline single-cell perturbation modelling while pointing towards relevant future perspectives like perturbation atlases, multi-omics and spatial datasets, causal machine learning for interpretability, multi-task learning for performance and explainability as well as prospects for solving interoperability and benchmarking pitfalls.

2.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785221

RESUMO

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1 % frequency, results were more reliable above a 5 % threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , COVID-19/virologia , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Genômica/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA