Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 36(1): 344-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25146455

RESUMO

Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Neurônios Colinérgicos/fisiologia , Dieta , Hipocampo/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Animais , Colina O-Acetiltransferase/metabolismo , Hipocampo/metabolismo , Masculino , Ratos Wistar , Membranas Sinápticas/fisiologia
2.
Neuropharmacology ; 91: 77-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25541414

RESUMO

The uridine nucleotides uridine-5'-triphosphate (UTP) and uridine-5'-diphosphate (UDP) have previously been identified in media from cultured cells. However, no study to date has demonstrated their presence in brain extracellular fluid (ECF) obtained in vivo. Using a novel method, we now show that UTP and UDP, as well as uridine, are detectable in dialysates of striatal ECF obtained from freely-moving rats. Intraperitoneal (i.p.) administration of uridine or exposure of striatum to depolarizing concentrations of potassium chloride increases extracellular uridine, UTP and UDP, while tetrodotoxin (TTX) decreases their ECF levels. Uridine administration also enhances cholinergic neurotransmission which is accompanied by enhanced brain levels of diacylglycerol (DAG) and inositol trisphosphate (IP3) and blocked by suramin, but not by PPADS (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid) or MRS2578 suggesting a possible mediation of P2Y2 receptors activated by UTP. These observations suggest that uridine, UTP and UDP may function as pyrimidinergic neurotransmitters, and that enhancement of such neurotransmission underlies pharmacologic effects of exogenous uridine on the brain.


Assuntos
Química Encefálica , Corpo Estriado/química , Corpo Estriado/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Difosfato de Uridina/análise , Uridina Trifosfato/análise , Acetilcolina/análise , Animais , Colina/análise , Corpo Estriado/efeitos dos fármacos , Líquido Extracelular/química , Masculino , Ratos , Ratos Sprague-Dawley , Uridina/farmacologia
3.
Neuroreport ; 24(17): 941-6, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24089014

RESUMO

Recent studies have demonstrated that arginine vasopressin (AVP) plays a crucial role in pain modulation. In addition, our previous studies have proven that centrally administered cytidine-5'-diphosphate-choline (CDP-choline; citicoline) elicits an analgesic effect in different pain models in rats. Given that CDP-choline enhances central and peripheral vasopressin levels, the present study was designed to investigate the role of central AVP receptors in the analgesic effect of CDP-choline in acute and chronic constriction injury-induced neuropathic pain models. For this purpose, rats were pretreated intracerebroventricularly with the AVP V1 or AVP V2 receptor antagonist 15 min before intracerebroventricular injection of CDP-choline or saline, and pain threshold was determined using the Randall-Selitto test. AVP V1 and AVP V2 receptor antagonist blocked the CDP-choline-induced analgesic effect either in acute or neuropathic models of pain in rats. These results suggest, for the first time, that central AVP receptors are involved in the CDP-choline-elicited analgesic effect.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/farmacologia , Arginina Vasopressina/metabolismo , Citidina Difosfato Colina/farmacologia , Neuralgia/tratamento farmacológico , Receptores de Vasopressinas/fisiologia , Analgésicos/uso terapêutico , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Arginina Vasopressina/análogos & derivados , Arginina Vasopressina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citidina Difosfato Colina/uso terapêutico , Masculino , Medição da Dor , Limiar da Dor , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA