Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 13(2): 025008, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877486

RESUMO

Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol-gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol-gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200-300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol-gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol-gel systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA