Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 38(9): 876-888, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36503292

RESUMO

The biological impact of chemical formulations used in various coating applications is essential in guiding the development of new materials that directly contact living organisms. To illustrate this point, an investigation addressing the impact of chemical compositions of polydimethylsiloxane networks on a common platform for foul-release biofouling management coatings was conducted. The acute toxicity of network components to barnacle larvae, the impacts of aqueous extracts of crosslinker, silicones and organometallic catalyst on trypsin enzymatic activity, and the impact of assembled networks on barnacle adhesion was evaluated. The outcomes of the study indicate that all components used in the formulation of the silicone network alter trypsin enzymatic activity and have a range of acute toxicity to barnacle larvae. Also, the adhesion strength of barnacles attached to PDMS networks correlates to the network formulation protocol. This information can be used to assess action mechanisms and risk-benefit analysis of PDMS networks.


Assuntos
Incrustação Biológica , Thoracica , Animais , Tripsina , Biofilmes , Incrustação Biológica/prevenção & controle , Silicones/química
2.
R Soc Open Sci ; 7(9): 200725, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047034

RESUMO

Barnacles are ancient arthropods that, as adults, are surrounded by a hard, mineralized, outer shell that the organism produces for protection. While extensive research has been conducted on the glue-like cement that barnacles use to adhere to surfaces, less is known about the barnacle exoskeleton, especially the process by which the barnacle exoskeleton is formed. Here, we present data exploring the changes that occur as the barnacle cyprid undergoes metamorphosis to become a sessile juvenile with a mineralized exoskeleton. Scanning electron microscope data show dramatic morphological changes in the barnacle exoskeleton following metamorphosis. Energy-dispersive X-ray spectroscopy indicates a small amount of calcium (8%) 1 h post-metamorphosis that steadily increases to 28% by 2 days following metamorphosis. Raman spectroscopy indicates calcite in the exoskeleton of a barnacle 2 days following metamorphosis and no detectable calcium carbonate in exoskeletons up to 3 h post-metamorphosis. Confocal microscopy indicates during this 2 day period, barnacle base plate area and height increases rapidly (0.001 mm2 h-1 and 0.30 µm h-1, respectively). These results provide critical information into the early life stages of the barnacle, which will be important for developing an understanding of how ocean acidification might impact the calcification process of the barnacle exoskeleton.

3.
Anal Biochem ; 586: 113441, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539523

RESUMO

Next generation sequencing (NGS) technologies can provide an understanding of the molecular processes involved in marine fouling by Amphibalanus spp. barnacles. Here, seven methods for extracting DNA from A. amphitrite prosomata were assessed with respect to recovery, purity and size distribution. Methods incorporating organic extractions generally resulted in low recovery of fragmented DNA. The most promising method was the commercial E.Z.N.A. Blood DNA Mini kit, which provided tens of micrograms of DNA of sufficient molecular weight for use in long-read NGS library preparation. Other kits resulted in DNA preps suitable for short read length NGS platforms.


Assuntos
DNA/genética , DNA/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Compostos Orgânicos/química , Thoracica/genética , Animais , Peso Molecular
4.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190203, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31495306

RESUMO

Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na+, Mg2+ and BO43-) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite). Additionally, surface-active glasses formed reaction layers at the glass-water interface, presenting another challenge to fouling organisms. Proteomics analysis showed that cement deposited on the gelatinous reaction layers is more soluble than cement deposited on insoluble glasses, indicating the reaction layer and/or released ions disrupted adhesion processes. Laboratory experiments showed that the majority (greater than 79%) of adult barnacles re-attached to silica-free borate glasses for 14 days could be released and, more importantly, barnacle larvae did not settle on the glasses. The formation of microbial biofilms in field tests diminished the performance of the materials. While periodic water jetting (120 psi) did not prevent the formation of biofilms, weekly cleaning did dramatically reduce macrofouling on magnesium aluminoborate glass to levels below a commercial foul-release coating. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Assuntos
Boratos/química , Magnésio/química , Sódio/química , Thoracica/fisiologia , Animais , Propriedades de Superfície
5.
Langmuir ; 35(5): 1818-1827, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30103609

RESUMO

Self-assembled monolayers (SAMs) are widely used in science and engineering, and recent progress has demonstrated the utility of zwitterionic peptides with alternating lysine (K) and glutamic acid (E) residues for antifouling purposes. Aiming at developing a peptide-based fouling-resistant SAM suitable for presentation of surface-attached pheromones for barnacle larvae, we have investigated five different peptide SAMs, where four are based on the EK motif, and the fifth was designed based on general principles for fouling resistance. The SAMs were formed by self-assembly onto gold substrates via cysteine residues on the peptides, and formation of SAMs was verified via ellipsometry, wettability, infrared reflection-absorption spectroscopy and cyclic voltammetry. Settlement of cypris larvae of the barnacle Balanus (=Amphibalanus) amphitrite, the target of pheromone studies, was tested. SAMs were also subjected to fouling assays using protein solutions, blood serum, and the bacterium Mycobacterium marinum. The results confirm the favorable antifouling properties of EK-containing peptides in most of the assays, although this did not apply to the barnacle larvae settlement test, where settlement was low on only one of the peptide SAMs. The one peptide that had antifouling properties for barnacles did not contain a pheromone motif, and would not be susceptible to degredation by common serine proteases. We conclude that the otherwise broadly effective antifouling properties of EK-containing peptide SAMs is not directly applicable to barnacles, and that great care must be exercised in the design of peptide-based SAMs for presentation of barnacle-specific ligands.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Peptídeos/química , Adsorção/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sangue , Ouro/química , Humanos , Mycobacterium marinum/metabolismo , Proteínas/química , Propriedades de Superfície , Thoracica/metabolismo
6.
PLoS One ; 13(12): e0208352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532169

RESUMO

The morphology and composition of tissue located within parietal shell canals of the barnacle Amphibalanus amphitrite are described. Longitudinal canal tissue nearly spans the length of side shell plates, terminating near the leading edge of the specimen basis in proximity to female reproductive tissue located throughout the peripheral sub-mantle region, i.e. mantle parenchyma. Microscopic examination of stained longitudinal canal sections reveal the presence of cell nuclei as well as an abundance of micron-sized spheroids staining positive for basic residues and lipids. Spheroids with the same staining profile are present extensively in ovarioles, particularly within oocytes which are readily identifiable at various developmental stages. Mass spectrometry analysis of longitudinal canal tissue compared to tissue collected from the mantle parenchyma reveals a nearly 50% overlap of the protein profile with the greatest number of sequence matches to vitellogenin, a glycolipoprotein playing a key role in vitellogenesis-yolk formation in developing oocytes. The morphological similarity and proximity to female reproductive tissue, combined with mass spectrometry of the two tissues, provides compelling evidence that one of several possible functions of longitudinal canal tissue is supporting the female reproductive system of A. amphitrite, thus expanding the understanding of the growth and development of this sessile marine organism.


Assuntos
Thoracica/citologia , Thoracica/metabolismo , Animais , Feminino , Masculino , Espectrometria de Massas , Oócitos/metabolismo , Esferoides Celulares/metabolismo , Vitelogeninas/metabolismo
7.
Adv Sci (Weinh) ; 5(6): 1700762, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938165

RESUMO

Marine macrofoulers (e.g., barnacles, tubeworms, mussels) create underwater adhesives capable of attaching themselves to almost any material. The difficulty in removing these organisms frustrates maritime and oceanographic communities, and fascinates biomedical and industrial communities seeking synthetic adhesives that cure and hold steadfast in aqueous environments. Protein analysis can reveal the chemical composition of natural adhesives; however, developing synthetic analogs that mimic their performance remains a challenge due to an incomplete understanding of adhesion processes. Here, it is shown that acorn barnacles (Amphibalanus (=Balanus) amphitrite) secrete a phase-separating fluid ahead of growth and cement deposition. This mixture consists of a phenolic laden gelatinous phase that presents a phase rich in lipids and reactive oxygen species at the seawater interface. Nearby biofilms rapidly oxidize and lift off the surface as the secretion advances. While phenolic chemistries are ubiquitous to arthropod adhesives and cuticles, the findings demonstrate that A. amphitrite uses these chemistries in a complex surface-cleaning fluid, at a substantially higher relative abundance than in its adhesive. The discovery of this critical step in underwater adhesion represents a missing link between natural and synthetic adhesives, and provides new directions for the development of environmentally friendly biofouling solutions.

8.
Biointerphases ; 12(5): 051003, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29287475

RESUMO

Multivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods. Principal coordinate analysis of the surface property characterization and the biological assays resulted in different groupings of the xerogel coatings. In particular, the biofouling organisms were able to distinguish four coatings that were not distinguishable by the surface properties of this study. The authors used canonical analysis of principal coordinates (CAP) to identify surface properties governing attachment across all five biofouling species. The CAP pointed to surface energy and surface charge as important drivers of patterns in biological attachment, but also suggested that differentiation of the surfaces was influenced to a comparable or greater extent by the dispersive component of surface energy.


Assuntos
Organismos Aquáticos/fisiologia , Incrustação Biológica , Fenômenos Fisiológicos , Propriedades de Superfície , Animais , Briozoários/fisiologia , Dessecação , Diatomáceas/fisiologia , Géis , Análise Multivariada , Eletricidade Estática , Thoracica/fisiologia , Ulva/fisiologia
9.
ACS Appl Mater Interfaces ; 9(13): 11493-11505, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273414

RESUMO

Oxidases are found to play a growing role in providing functional chemistry to marine adhesives for the permanent attachment of macrofouling organisms. Here, we demonstrate active peroxidase and lysyl oxidase enzymes in the adhesive layer of adult Amphibalanus amphitrite barnacles through live staining, proteomic analysis, and competitive enzyme assays on isolated cement. A novel full-length peroxinectin (AaPxt-1) secreted by barnacles is largely responsible for oxidizing phenolic chemistries; AaPxt-1 is driven by native hydrogen peroxide in the adhesive and oxidizes phenolic substrates typically preferred by phenoloxidases (POX) such as laccase and tyrosinase. A major cement protein component AaCP43 is found to contain ketone/aldehyde modifications via 2,4-dinitrophenylhydrazine (DNPH) derivatization, also called Brady's reagent, of cement proteins and immunoblotting with an anti-DNPH antibody. Our work outlines the landscape of molt-related oxidative pathways exposed to barnacle cement proteins, where ketone- and aldehyde-forming oxidases use peroxide intermediates to modify major cement components such as AaCP43.


Assuntos
Oxirredutases/metabolismo , Adesivos , Animais , Catecol Oxidase , Peróxidos , Proteína-Lisina 6-Oxidase , Proteômica , Thoracica
10.
J Exp Biol ; 220(Pt 2): 194-207, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27811301

RESUMO

Mobile barnacle cypris larvae settle and metamorphose, transitioning to sessile juveniles with morphology and growth similar to that of adults. Because biofilms exist on immersed surfaces on which they attach, barnacles must interact with bacteria during initial attachment and subsequent growth. The objective of this study was to characterize the developing interface of the barnacle and substratum during this key developmental transition to inform potential mechanisms that promote attachment. The interface was characterized using confocal microscopy and fluorescent dyes to identify morphological and chemical changes to the interface and the status of bacteria present as a function of barnacle developmental stage. Staining revealed patchy material containing proteins and nucleic acids, reactive oxygen species amidst developing cuticle, and changes in bacteria viability at the developing interface. We found that as barnacles metamorphose from the cyprid to juvenile stage, proteinaceous materials with the appearance of coagulated liquid were released into and remained at the interface. It stained positive for proteins, including phosphoprotein, as well as nucleic acids. Regions of the developing cuticle and the patchy material itself stained for reactive oxygen species. Bacteria were absent until the cyprid was firmly attached, but populations died as barnacle development progressed. The oxidative environment may contribute to the cytotoxicity observed for bacteria and has the potential for oxidative crosslinking of cuticle and proteinaceous materials at the interface.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Metamorfose Biológica , Thoracica/crescimento & desenvolvimento , Animais , Proteínas de Artrópodes/metabolismo , Corantes Fluorescentes , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/microbiologia , Microscopia Confocal , Ácidos Nucleicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Thoracica/metabolismo , Thoracica/microbiologia
11.
Sci Rep ; 6: 36219, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824121

RESUMO

Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.


Assuntos
Proteínas de Artrópodes/genética , Proteômica/métodos , Análise de Sequência de RNA/métodos , Thoracica/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Celulases/genética , Celulases/metabolismo , Fibroínas/genética , Peso Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Homologia de Sequência de Aminoácidos , Thoracica/genética
12.
Biofouling ; 32(9): 1017-28, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27560712

RESUMO

Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/química , Elastômeros de Silicone/química , Óleos de Silicone/química , Thoracica/fisiologia , Animais , Propriedades de Superfície
13.
Environ Pollut ; 218: 973-980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569057

RESUMO

Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.


Assuntos
Briozoários/crescimento & desenvolvimento , Briozoários/metabolismo , Plásticos/toxicidade , Thoracica/crescimento & desenvolvimento , Thoracica/metabolismo , Adolescente , Animais , Vidro , Humanos , Larva/crescimento & desenvolvimento , Cimento de Policarboxilato/toxicidade , Cloreto de Polivinila/toxicidade , Propriedades de Superfície
14.
Biol Bull ; 230(3): 233-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27365418

RESUMO

Barnacles permanently adhere to nearly any inert substrate using proteinaceous glue. The glue consists of at least ten major proteins, some of which have been isolated and sequenced. Questions still remain about the chemical mechanisms involved in adhesion and the potential of the glue to serve as a platform for mineralization of the calcified base plate. We tested the hypothesis that barnacle glue contains phosphoproteins, which have the potential to play a role in both adhesion and mineralization. Using a combination of phosphoprotein-specific gel staining and Western blotting with anti-phosphoserine antibody, we identified multiple phosphorylated proteins in uncured glue secretions from the barnacle Amphibalanus amphitrite The protein composition of the glue and the quantity and abundance of phosphoproteins varied distinctly among individual barnacles, possibly due to cyclical changes in the glue secretion over time. We assessed the location of the phosphoproteins within the barnacle glue layer using decalcified barnacle base plates and residual glue deposited by reattached barnacles. Phosphoproteins were found throughout the organic matrix of the base plate and within the residual glue. Staining within the residual glue appeared most intensely in regions where capillary glue ducts, which are involved in cyclical release of glue, had been laid down. Lastly, mineralization studies of glue proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that proteins identified as phosphorylated possibly induce mineralization of calcium carbonate (CaCO3). These results contribute to our understanding of the protein composition of barnacle glue, and provide new insights into the potential roles of phosphoproteins in underwater bioadhesives.


Assuntos
Fosfoproteínas/metabolismo , Thoracica/metabolismo , Adesivos/química , Animais , Western Blotting , Carbonato de Cálcio/metabolismo , Fosfoproteínas/isolamento & purificação
15.
Environ Sci Technol ; 50(2): 924-31, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26667586

RESUMO

Plastic pollution represents a major and growing global problem. It is well-known that plastics are a source of chemical contaminants to the aquatic environment and provide novel habitats for marine organisms. The present study quantified the impacts of plastic leachates from the seven categories of recyclable plastics on larval survival and settlement of barnacle Amphibalanus (=Balanus) amphitrite. Leachates from plastics significantly increased barnacle nauplii mortality at the highest tested concentrations (0.10 and 0.50 m(2)/L). Hydrophobicity (measured as surface energy) was positively correlated with mortality indicating that plastic surface chemistry may be an important factor in the effects of plastics on sessile organisms. Plastic leachates significantly inhibited barnacle cyprids settlement on glass at all tested concentrations. Settlement on plastic surfaces was significantly inhibited after 24 and 48 h, but settlement was not significantly inhibited compared to the controls for some plastics after 72-96 h. In 24 h exposure to seawater, we found larval toxicity and inhibition of settlement with all seven categories of recyclable commercial plastics. Chemical analysis revealed a complex mixture of substances released in plastic leachates. Leaching of toxic compounds from all plastics should be considered when assessing the risks of plastic pollution.


Assuntos
Plásticos/química , Plásticos/toxicidade , Água do Mar/química , Thoracica/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Testes de Toxicidade
16.
Langmuir ; 32(2): 541-50, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26681301

RESUMO

Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct their adhesive interfaces.


Assuntos
Adesivos/química , Amidas/química , Proteínas/química , Thoracica/química , Adesividade , Animais , Vidro/química , Ouro/química , Muda/fisiologia , Imagem Óptica , Oxirredução , Proteínas/metabolismo , Refratometria , Água do Mar , Thoracica/fisiologia
17.
ACS Appl Mater Interfaces ; 7(46): 25586-91, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26554418

RESUMO

We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.


Assuntos
Incrustação Biológica , Polímeros/química , Elastômeros de Silicone/química , Bactérias/efeitos dos fármacos , Aderência Bacteriana , Biofilmes/efeitos dos fármacos , Íons , Espectroscopia Fotoeletrônica , Polimerização , Polivinil/farmacologia , Siloxanas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Biofouling ; 31(3): 265-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25917206

RESUMO

Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.


Assuntos
Biofilmes , Incrustação Biológica/prevenção & controle , Teste de Materiais , Elastômeros de Silicone/química , Bactérias/crescimento & desenvolvimento , Módulo de Elasticidade , Água do Mar , Propriedades de Superfície
19.
Biofouling ; 30(7): 799-812, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115515

RESUMO

The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.


Assuntos
Thoracica/crescimento & desenvolvimento , Animais , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Thoracica/citologia
20.
Nat Commun ; 5: 4414, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25014570

RESUMO

Thoracian barnacles rely heavily upon their ability to adhere to surfaces and are environmentally and economically important as biofouling pests. Their adhesives have unique attributes that define them as targets for bio-inspired adhesive development. With the aid of multi-photon and broadband coherent anti-Stokes Raman scattering microscopies, we report that the larval adhesive of barnacle cyprids is a bi-phasic system containing lipids and phosphoproteins, working synergistically to maximize adhesion to diverse surfaces under hostile conditions. Lipids, secreted first, possibly displace water from the surface interface creating a conducive environment for introduction of phosphoproteins while simultaneously modulating the spreading of the protein phase and protecting the nascent adhesive plaque from bacterial biodegradation. The two distinct phases are contained within two different granules in the cyprid cement glands, implying far greater complexity than previously recognized. Knowledge of the lipidic contribution will hopefully inspire development of novel synthetic bioadhesives and environmentally benign antifouling coatings.


Assuntos
Lipídeos/fisiologia , Fosfoproteínas/fisiologia , Thoracica/fisiologia , Adesividade , Animais , Larva/fisiologia , Estágios do Ciclo de Vida/fisiologia , Thoracica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA