Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Cancer J ; 14(1): 74, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684670

RESUMO

Smoldering multiple myeloma (SMM) precedes multiple myeloma (MM). The risk of progression of SMM patients is not uniform, thus different progression-risk models have been developed, although they are mainly based on clinical parameters. Recently, genomic predictors of progression have been defined for untreated SMM. However, the usefulness of such markers in the context of clinical trials evaluating upfront treatment in high-risk SMM (HR SMM) has not been explored yet, precluding the identification of baseline genomic alterations leading to drug resistance. For this reason, we carried out next-generation sequencing and fluorescent in-situ hybridization studies on 57 HR and ultra-high risk (UHR) SMM patients treated in the phase II GEM-CESAR clinical trial (NCT02415413). DIS3, FAM46C, and FGFR3 mutations, as well as t(4;14) and 1q alterations, were enriched in HR SMM. TRAF3 mutations were specifically associated with UHR SMM but identified cases with improved outcomes. Importantly, novel potential predictors of treatment resistance were identified: NRAS mutations and the co-occurrence of t(4;14) plus FGFR3 mutations were associated with an increased risk of biological progression. In conclusion, we have carried out for the first time a molecular characterization of HR SMM patients treated with an intensive regimen, identifying genomic predictors of poor outcomes in this setting.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Mutação , Mieloma Múltiplo Latente , Humanos , Masculino , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Mieloma Múltiplo Latente/genética , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Cardiovasc Diabetol ; 23(1): 98, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493287

RESUMO

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Feminino , Humanos , Masculino , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Telômero , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
3.
J Biomed Sci ; 31(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183057

RESUMO

BACKGROUND: Excessive lipid accumulation in the adipose tissue in obesity alters the endocrine and energy storage functions of adipocytes. Adipocyte lipid droplets represent key organelles coordinating lipid storage and mobilization in these cells. Recently, we identified the small GTPase, Rab34, in the lipid droplet proteome of adipocytes. Herein, we have characterized the distribution, intracellular transport, and potential contribution of this GTPase to adipocyte physiology and its regulation in obesity. METHODS: 3T3-L1 and human primary preadipocytes were differentiated in vitro and Rab34 distribution and trafficking were analyzed using markers of cellular compartments. 3T3-L1 adipocytes were transfected with expression vectors and/or Rab34 siRNA and assessed for secretory activity, lipid accumulation and expression of proteins regulating lipid metabolism. Proteomic and protein interaction analyses were employed for the identification of the Rab34 interactome. These studies were combined with functional analysis to unveil the role played by the GTPase in adipocytes, with a focus on the actions conveyed by Rab34 interacting proteins. Finally, Rab34 regulation in response to obesity was also evaluated. RESULTS: Our results show that Rab34 localizes at the Golgi apparatus in preadipocytes. During lipid droplet biogenesis, Rab34 translocates from the Golgi to endoplasmic reticulum-related compartments and then reaches the surface of adipocyte lipid droplets. Rab34 exerts distinct functions related to its intracellular location. Thus, at the Golgi, Rab34 regulates cisternae integrity as well as adiponectin trafficking and oligomerization. At the lipid droplets, this GTPase controls lipid accumulation and lipolysis through its interaction with the E1-ubiquitin ligase, UBA1, which induces the ubiquitination and proteasomal degradation of the fatty acid transporter and member of Rab34 interactome, FABP5. Finally, Rab34 levels in the adipose tissue and adipocytes are regulated in response to obesity and related pathogenic insults (i.e., fibrosis). CONCLUSIONS: Rab34 plays relevant roles during adipocyte differentiation, including from the regulation of the oligomerization (i.e., biological activity) and secretion of a major adipokine with insulin-sensitizing actions, adiponectin, to lipid storage and mobilization from lipid droplets. Rab34 dysregulation in obesity may contribute to the altered adipokine secretion and lipid metabolism that characterize adipocyte dysfunction in conditions of excess adiposity.


Assuntos
Adiponectina , Proteômica , Humanos , Adipócitos , Adipocinas , GTP Fosfo-Hidrolases , Obesidade , Lipídeos , Proteínas de Ligação a Ácido Graxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA