Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomark Res ; 12(1): 47, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704604

RESUMO

BACKGROUND: Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence. METHODS: Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD+ and NADH levels, ATP production rate by Seahorse analyzer, and intracellular ATP content. Mitochondrial fitness was estimated by measurements of mitochondrial membrane potential, ROS, and calcium accumulation by flow cytometry, and morphology was visualized by TEM. Bioinformatic analysis, real-time qPCR, western blotting, chemical reaction prediction, and molecular docking were utilized to identify the drug target. The immunogenic potential was assessed by high mobility group box (HMGB)1 ELISA assay, luciferase-based extracellular ATP assay, ectopic calreticulin expression by flow cytometry, and validated by phagocytosis assay, and in vivo vaccination assay using syngeneic C57BL/6 mice. RESULTS: Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities. CONCLUSIONS: Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.

2.
Mar Drugs ; 21(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103372

RESUMO

Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.


Assuntos
Leucemia , Leucócitos Mononucleares , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Peixe-Zebra/metabolismo , Regulação para Baixo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proteína bcl-X/metabolismo , Proteína bcl-X/farmacologia
3.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063867

RESUMO

Aplysinopsins are a class of marine indole alkaloids that exhibit a wide range of biological activities. Although both the indole and N-benzyl moieties of aplysinopsins are known to possess antiproliferative activity against cancer cells, their mechanism of action remains unclear. Through in vitro and in vivo proliferation and viability screening of newly synthesized aplysinopsin analogs on myelogenous leukemia cell lines and zebrafish toxicity tests, as well as analysis of differential toxicity in noncancerous RPMI 1788 cells and PBMCs, we identified EE-84 as a promising novel drug candidate against chronic myeloid leukemia. This indole derivative demonstrated drug-likeness in agreement with Lipinski's rule of five. Furthermore, EE-84 induced a senescent-like phenotype in K562 cells in line with its cytostatic effect. EE-84-treated K562 cells underwent morphological changes in line with mitochondrial dysfunction concomitant with autophagy and ER stress induction. Finally, we demonstrated the synergistic cytotoxic effect of EE-84 with a BH3 mimetic, the Mcl-1 inhibitor A-1210477, against imatinib-sensitive and resistant K562 cells, highlighting the inhibition of antiapoptotic Bcl-2 proteins as a promising novel senolytic approach against chronic myeloid leukemia.


Assuntos
Antineoplásicos/farmacologia , Citotoxinas/farmacologia , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Sulfonamidas/farmacologia , Triptofano/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citotoxinas/química , Citotoxinas/toxicidade , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Indóis/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Sulfonamidas/química , Triptofano/química , Triptofano/farmacologia , Triptofano/toxicidade , Peixe-Zebra
4.
Cell Death Dis ; 11(2): 109, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034134

RESUMO

By comparing imatinib-sensitive and -resistant chronic myeloid leukemia (CML) cell models, we investigated the molecular mechanisms by which tetrahydrobenzimidazole derivative TMQ0153 triggered caspase-dependent apoptosis at low concentrations accompanied by loss of mitochondrial membrane potential (MMP) and increase of cytosolic free Ca2+ levels. Interestingly, at higher concentrations, TMQ0153 induced necroptotic cell death with accumulation of ROS, both preventable by N-acetyl-L-cysteine (NAC) pretreatment. At necroptosis-inducing concentrations, we observed increased ROS and decreased ATP and GSH levels, concomitant with protective autophagy induction. Inhibitors such as bafilomycin A1 (baf-A1) and siRNA against beclin 1 abrogated autophagy, sensitized CML cells against TMQ0153 and enhanced necroptotic cell death. Importantly, TMQ153-induced necrosis led to cell surface exposure of calreticulin (CRT) and ERp57 as well as the release of extracellular ATP and high mobility group box (HMGB1) demonstrating the capacity of this compound to release immunogenic cell death (ICD) markers. We validated the anti-cancer potential of TMQ0153 by in vivo inhibition of K562 microtumor formation in zebrafish. Taken together, our findings provide evidence that cellular stress and redox modulation by TMQ0153 concentration-dependently leads to different cell death modalities including controlled necrosis in CML cell models.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzimidazóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Necroptose/efeitos dos fármacos , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Peixe-Zebra
5.
Mar Drugs ; 18(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963113

RESUMO

Treatment of acute myeloid leukemia (AML) remains inefficient due to drug resistance and relapse, particularly in patients with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD). Marine-derived natural products have recently been used for drug development against AML. We show in this study that petromurin C, which was isolated from the culture extract of the marine-derived fungus Aspergillus candidus KUFA0062, isolated from the marine sponge Epipolasis sp., induces early autophagy followed by apoptotic cell death via activation of the intrinsic cell death pathway concomitant with mitochondrial stress and downregulation of Mcl-1 in FLT3-ITD mutated MV4-11 cells. Moreover, petromurin C synergized with the clinically-used FLT3 inhibitor gilteritinib at sub-toxic concentrations. Altogether, our results provide preliminary indications that petromurin C provides anti-leukemic effects alone or in combination with gilteritinib.


Assuntos
Compostos de Anilina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pirazinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Compostos de Anilina/administração & dosagem , Animais , Organismos Aquáticos/química , Autofagia/efeitos dos fármacos , Produtos Biológicos/administração & dosagem , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Pirazinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Células U937 , Peixe-Zebra , Tirosina Quinase 3 Semelhante a fms/genética
7.
Cancer Lett ; 438: 197-218, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205168

RESUMO

We synthetized and investigated the anti-leukemic potential of the novel cytostatic bis(4-hydroxycoumarin) derivative OT-55 which complied with the Lipinski's rule of 5 and induced differential toxicity in various chronic myeloid leukemia (CML) cell models. OT-55 triggered ER stress leading to canonical, caspase-dependent apoptosis and release of danger associated molecular patterns. Consequently, OT-55 promoted phagocytosis of OT-55-treated CML cells by both murine and human monocyte-derived macrophages. Moreover, OT-55 inhibited tumor necrosis factor α-induced activation of nuclear factor-кB and produced synergistic effects when used in combination with imatinib to inhibit colony formation in vitro and Bcr-Abl+ patient blast xenograft growth in zebrafish. Furthermore, OT-55 synergized with omacetaxine in imatinib-resistant KBM-5 R cells to inhibit the expression of Mcl-1, triggering apoptosis. In imatinib-resistant K562 R cells, OT-55 triggered necrosis and blocked tumor formation in zebrafish in combination with omacetaxine.


Assuntos
Alarminas/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Mepesuccinato de Omacetaxina/administração & dosagem , Humanos , Mesilato de Imatinib/administração & dosagem , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Macrófagos/imunologia , Camundongos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA