Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 1276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281292

RESUMO

Escherichia coli cells support the nucleation and growth of ruthenium and ruthenium-palladium nanoparticles (Bio-Ru and Bio-Pd/Ru NPs). We report a method for the synthesis of these monometallic and bimetallic NPs and their application in the catalytic upgrading of 5-hydroxymethyl furfural (5-HMF) to 2,5 dimethylfuran (DMF). Examination using high resolution transmission electron microscopy with energy dispersive X-ray microanalysis (EDX) and high angle annular dark field (HAADF) showed Ru NPs located mainly at the cell surface using Ru(III) alone but small intracellular Ru-NPs (size ∼1-2 nm) were visible only in cells that had been pre-"seeded" with Pd(0) (5 wt%) and loaded with equimolar Ru. Pd(0) NPs were distributed between the cytoplasm and cell surface. Cells bearing 5% Pd/5% Ru showed some co-localization of Pd and Ru but chance associations were not ruled out. Cells loaded to 5 wt% Pd/20 wt% Ru showed evidence of core-shell structures (Ru core, Pd shell). Examination of this cell surface material using X-ray photoelectron spectroscopy (XPS) showed Pd(0) and Pd(II) and Ru(IV) and Ru(III), with confirmation by analysis of bulk material using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses. Both Bio-Ru NPs and Bio-Pd/Ru NPs were active in the conversion of 5-HMF into 2,5-DMF but commercial Ru on carbon catalyst outperformed 5 wt% bio-Ru by fourfold. While 5 wt% Pd/20 wt% Ru achieved 20% yield of DMF the performance of the 5 wt% Pd/5 wt% Ru bio-catalyst was higher and comparable to the commercial 5 wt% Ru/C catalyst in a test reaction using commercial 5-HMF (>50% selectivity). 5-HMF was prepared by thermochemical hydrolysis of starch and cellulose with solvent extraction of 5-HMF into methyltetrahydrofuran (MTHF). Here, with MTHF as the reaction solvent the commercial Ru/C catalyst had little activity (100% conversion, negligible selectivity to DMF) whereas the 5 wt% Pd/5 wt% Ru bio-bimetallic gave 100% conversion and 14% selectivity to DMF from material extracted from hydrolyzates. The results indicate a potential green method for realizing increased energy potential from biomass wastes as well as showing a bio-based pathway to manufacturing a scarcely described bimetallic material.

2.
Front Microbiol ; 10: 970, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134018

RESUMO

Biogas-energy is marginally profitable against the "parasitic" energy demands of processing biomass. Biogas involves microbial fermentation of feedstock hydrolyzate generated enzymatically or thermochemically. The latter also produces 5-hydroxymethyl furfural (5-HMF) which can be catalytically upgraded to 2, 5-dimethyl furan (DMF), a "drop in fuel." An integrated process is proposed with side-stream upgrading into DMF to mitigate the "parasitic" energy demand. 5-HMF was upgraded using bacterially-supported Pd/Ru catalysts. Purpose-growth of bacteria adds additional process costs; Pd/Ru catalysts biofabricated using the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans were compared to those generated from a waste consortium of acidophilic sulfidogens (CAS). Methyl tetrahydrofuran (MTHF) was used as the extraction-reaction solvent to compare the use of bio-metallic Pd/Ru catalysts to upgrade 5-HMF to DMF from starch and cellulose hydrolyzates. MTHF extracted up to 65% of the 5-HMF, delivering solutions, respectively, containing 8.8 and 2.2 g 5-HMF/L MTHF. Commercial 5% (wt/wt) Ru-carbon catalyst upgraded 5-HMF from pure solution but it was ineffective against the hydrolyzates. Both types of bacterial catalyst (5wt%Pd/3-5wt% Ru) achieved this, bio-Pd/Ru on the CAS delivering the highest conversion yields. The yield of 5-HMF from starch-cellulose thermal treatment to 2,5 DMF was 224 and 127 g DMF/kg extracted 5-HMF, respectively, for CAS and D. desulfuricans catalysts, which would provide additional energy of 2.1 and 1.2 kWh/kg extracted 5-HMF. The CAS comprised a mixed population with three patterns of metallic nanoparticle (NP) deposition. Types I and II showed cell surface-localization of the Pd/Ru while type III localized NPs throughout the cell surface and cytoplasm. No metallic patterning in the NPs was shown via elemental mapping using energy dispersive X-ray microanalysis but co-localization with sulfur was observed. Analysis of the cell surfaces of the bulk populations by X-ray photoelectron spectroscopy confirmed the higher S content of the CAS bacteria as compared to D. desulfuricans and also the presence of Pd-S as well as Ru-S compounds and hence a mixed deposit of PdS, Pd(0), and Ru in the form of various +3, +4, and +6 oxidation states. The results are discussed in the context of recently-reported controlled palladium sulfide ensembles for an improved hydrogenation catalyst.

3.
Microb Biotechnol ; 10(5): 1120-1127, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28834420

RESUMO

Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues.


Assuntos
Bactérias/metabolismo , Hidrogênio/metabolismo , Bactérias/química , Fontes de Energia Bioelétrica/microbiologia , Biocombustíveis/análise , Fermentação , Hidrogênio/análise , Resíduos/análise
4.
Biotechnol Lett ; 34(12): 2229-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22932930

RESUMO

Microbial solar biofuels offer great promise for future sustainable food, fuels and chemicals but are limited by low productivities and a requirement for large land areas to harvest sunlight. A 71 % increase in combined photosynthetic activity was achieved by illuminating both Rhodobacter sphaeroides and Arthrospira (Spirulina) platensis from a single beam of simulated sunlight, divided using a dichroic mirror. Therefore, this technique is termed 'dichroic beam-sharing', in which the complementary action spectra of two different useful micro-organisms, belonging to green and purple groups, is exploited and allows a single beam of sunlight to be shared efficiently between separate photobioreactors. Because the action spectra of these two organisms are typical of large groups, this novel method could increase the productivity of photosynthetic micro-organisms in the production of diverse commodities.


Assuntos
Fotossíntese , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Spirulina/fisiologia , Spirulina/efeitos da radiação , Luz Solar , Fotobiorreatores/microbiologia
5.
Bioresour Technol ; 119: 384-92, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22763044

RESUMO

An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion.


Assuntos
Biocombustíveis/microbiologia , Escherichia coli/fisiologia , Microbiologia de Alimentos , Calefação/métodos , Hidrogênio/metabolismo , Fotobiorreatores/microbiologia , Eliminação de Resíduos/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Hidrogênio/isolamento & purificação , Hidrólise , Integração de Sistemas , Água/química
6.
Bioresour Technol ; 107: 166-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22225609

RESUMO

Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50-70% maintained over continuous 30-day experiments. Contrary to previous reports, E. coli produced H(2) after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy.


Assuntos
Eletroquímica/métodos , Fermentação , Hidrogênio/metabolismo , Aerobiose , Reatores Biológicos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA