Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 100(1-1): 012901, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499798

RESUMO

We show that the interparticle friction coefficient significantly influences the flow and jamming behavior of granular materials exiting through the orifice of a two-dimensional silo in the presence of another orifice located in its vicinity. The fluctuations emanating from a continuous flow through a larger orifice results in an intermittent flow through the smaller orifice consisting of sequential jamming and flowing events. The mean time duration of jammed and flow events, respectively, increase and decrease monotonically with increasing interparticle friction coefficient. The frequency of unjamming instances (n_{u}), however, shows a nonmonotonic behavior comprising an increase followed by a decrease with increasing friction coefficient. The decrease on either side of the maximum, then, represents a system moving progressively towards a permanently jammed or a permanently flowing state. The overall behavior shows a systematic dependence on the interorifice distance, which determines the strength of the fluctuations reaching the smaller orifice leading to unjamming instances. The probability distributions of jamming and flowing times are nearly similar for different combinations of friction coefficients and interorifice distances studied and, respectively, exhibit exponential and power-law tails.

2.
Soft Matter ; 12(39): 8167-8176, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27604578

RESUMO

We studied the aging dynamics of an aqueous suspension of LAPONITE®, a model time dependent soft glassy material, using a passive microrheology technique. This system is known to undergo physical aging during which its microstructure evolves progressively to explore lower free energy states. Optical microscopy is used to monitor the motion of micron-sized tracer probes embedded in a sample kept between two glass plates. The mean square displacements (MSD) obtained from the motion of the tracer particles show a systematic change from a purely diffusive behavior at short aging times to a subdiffusive behavior as the material ages. Interestingly, the MSDs at all the aging times as well as different LAPONITE® concentrations superpose remarkably to show a time-aging time master curve when the system is transformed from the real time domain to the effective time domain, which is obtained by rescaling the material clock to account for the age dependent relaxation time. The transformation of the master curve from the effective time domain to the real time domain leads to the prediction of the MSD in real time over a span of 5 decades when the measured data at individual aging times are only over 2 decades. Since the MSD obtained from microrheology is proportional to the creep compliance of a material, by using the Boltzmann superposition principle along with the convolution relation in the effective time domain, we predict the stress relaxation behavior of the system in real time. This work shows that the effective time approach applied to microrheology facilitates the prediction of long time creep and relaxation dynamics of a time dependent soft material by carrying out short time experiments at different aging times.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25215670

RESUMO

We show that the flow of granular material inside a two-dimensional flat bottomed hopper is altered significantly by having more than one exit orifice. For hoppers with small orifice widths, intermittent flow through one orifice enables the resumption of flow through the adjacent jammed orifice, thus displaying a sequence of jamming and unjamming events. Using discrete element simulations, we show that the total amount of granular material (i.e., avalanche size) emanating from all the orifices combined can be enhanced by about an order of magnitude difference by simply adjusting the interorifice distance. The unjamming is driven primarily by fluctuations alone when the interorifice distance is large, but when the orifices are brought close enough, the fluctuations along with the mean flow cause the flow to unjam.


Assuntos
Simulação por Computador , Modelos Teóricos
4.
Artigo em Inglês | MEDLINE | ID: mdl-25615084

RESUMO

We investigate the mixing characteristics of dry granular material while draining down a silo with multiple exit orifices. The mixing in the silo, which otherwise consists of noninteracting stagnant and flowing regions, is observed to improve significantly when the flow through specific orifices is stopped intermittently. This momentary stoppage of flow through the orifice is either controlled manually or is chosen by the system itself when the orifice width is small enough to cause spontaneous jamming and unjamming. We observe that the overall mixing behavior shows a systematic dependence on the frequency of closing and opening of specific orifices. In particular, the silo configuration employing random jamming and unjamming of any of the orifices shows early evidence of chaotic mixing. When operated in a multipass mode, the system exhibits a practical and efficient way of mixing particles.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 031305, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905108

RESUMO

We report a detailed comparison of a slow gravity-driven sheared granular flow with a discrete-element simulation performed in the same geometry. In the experiments, grains flow inside a silo with a rectangular cross section and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index-matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The simulations use a Cundall-Strack contact model between the grains using contact parameters that have been used in many other previous studies and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. We then perform a detailed comparison of the particle fluctuation properties as measured by the displacement probability distribution function and the mean square displacement. All in all, our study suggests a high level of quantitative agreement between the simulations and experiments.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 1): 031302, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17930237

RESUMO

We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continuous avalanching regime and measure the impact of the volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minimum occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the time scale over which particles come in contact.

7.
Phys Rev Lett ; 98(23): 238001, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17677936

RESUMO

We show that the velocity correlations in uniform dense granular flows inside a silo are similar to the hydrodynamic response of an elastic hard-sphere liquid. The measurements are made using a fluorescent refractive-index-matched interstitial fluid in a regime where the flow is dominated by grains in enduring contact and fluctuations scale with the distance traveled, independent of flow rate. The velocity autocorrelation function of the grains in the bulk shows a negative correlation at short time and slow oscillatory decay to zero similar to simple liquids. Weak spatial velocity correlations are observed over several grain diameters. The mean square displacements show an inflection point indicative of caging dynamics. The observed correlations are qualitatively different at the boundaries.


Assuntos
Movimento (Física) , Tamanho da Partícula
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 1): 010301, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16486106

RESUMO

We investigate the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before it increases and saturates to a value that depends on the roughness of the sliding surface. We use an index-matched interstitial liquid to probe the internal motion of the grains with fluorescence imaging in a regime where the liquid has no significant effect on the measured friction. The shear profiles obtained as a function of depth show a decrease in slip near the sliding surface as the layer thickness is increased. We propose that the friction depends on the degree of grain confinement relative to the sliding surfaces.

9.
Phys Rev Lett ; 93(6): 068001, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15323663

RESUMO

The rheology of a granular shear flow is studied in a quasi-2D rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and nonaccelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (eta) variation with rms velocity (u). Below the transition depth we find that the rms velocity decreases with depth and eta proportional to u(-1.5) for all the different cases studied. The material approaches an amorphous solidlike state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The results indicate a sharp transition from a fluid to a fluid + solid state with decreasing rms velocity.


Assuntos
Biofísica/métodos , Reologia , Processamento de Imagem Assistida por Computador , Distribuição Normal , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA