Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(6): 2030-2036, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911166

RESUMO

Antimicrobial peptides (AMPs) are naturally occurring or designed peptides up to a few tens of amino acids which may help address the antimicrobial resistance crisis. However, their clinical development is limited by toxicity to human cells, a parameter which is very difficult to control. Given the similarity between peptide sequences and words, large language models (LLMs) might be able to predict AMP activity and toxicity. To test this hypothesis, we fine-tuned LLMs using data from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). GPT-3 performed well but not reproducibly for activity prediction and hemolysis, taken as a proxy for toxicity. The later GPT-3.5 performed more poorly and was surpassed by recurrent neural networks (RNN) trained on sequence-activity data or support vector machines (SVM) trained on MAP4C molecular fingerprint-activity data. These simpler models are therefore recommended, although the rapid evolution of LLMs warrants future re-evaluation of their prediction abilities.

2.
J Cheminform ; 16(1): 53, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741153

RESUMO

Molecular fingerprints are indispensable tools in cheminformatics. However, stereochemistry is generally not considered, which is problematic for large molecules which are almost all chiral. Herein we report MAP4C, a chiral version of our previously reported fingerprint MAP4, which lists MinHashes computed from character strings containing the SMILES of all pairs of circular substructures up to a diameter of four bonds and the shortest topological distance between their central atoms. MAP4C includes the Cahn-Ingold-Prelog (CIP) annotation (R, S, r or s) whenever the chiral atom is the center of a circular substructure, a question mark for undefined stereocenters, and double bond cis-trans information if specified. MAP4C performs slightly better than the achiral MAP4, ECFP and AP fingerprints in non-stereoselective virtual screening benchmarks. Furthermore, MAP4C distinguishes between stereoisomers in chiral molecules from small molecule drugs to large natural products and peptides comprising thousands of diastereomers, with a degree of distinction smaller than between structural isomers and proportional to the number of chirality changes. Due to its excellent performance across diverse molecular classes and its ability to handle stereochemistry, MAP4C is recommended as a generally applicable chiral molecular fingerprint. SCIENTIFIC CONTRIBUTION: The ability of our chiral fingerprint MAP4C to handle stereoisomers from small molecules to large natural products and peptides is unprecedented and opens the way for cheminformatics to include stereochemistry as an important molecular parameter across all fields of molecular design.

3.
Angew Chem Int Ed Engl ; 63(10): e202317901, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38088924

RESUMO

Rising antimicrobial resistance (AMR) and lack of innovation in the antibiotic pipeline necessitate novel approaches to discovering new drugs. Metal complexes have proven to be promising antimicrobial compounds, but the number of studied compounds is still low compared to the millions of organic molecules investigated so far. Lately, machine learning (ML) has emerged as a valuable tool for guiding the design of small organic molecules, potentially even in low-data scenarios. For the first time, we extend the application of ML to the discovery of metal-based medicines. Utilising 288 modularly synthesized ruthenium arene Schiff-base complexes and their antibacterial properties, a series of ML models were trained. The models perform well and are used to predict the activity of 54 new compounds. These displayed a 5.7x higher hit-rate (53.7 %) against methicillin-resistant Staphylococcus aureus (MRSA) compared to the original library (9.4 %), demonstrating that ML can be applied to improve the success-rates in the search of new metalloantibiotics. This work paves the way for more ambitious applications of ML in the field of metal-based drug discovery.


Assuntos
Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Rutênio , Rutênio/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia
4.
Digit Discov ; 2(5): 1289-1296, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-38013905

RESUMO

Chemical space maps help visualize similarities within molecular sets. However, there are many different molecular similarity measures resulting in a confusing number of possible comparisons. To overcome this limitation, we exploit the fact that tools designed for reaction informatics also work for alchemical processes that do not obey Lavoisier's principle, such as the transmutation of lead into gold. We start by using the differential reaction fingerprint (DRFP) to create tree-maps (TMAPs) representing the chemical space of pairs of drugs selected as being similar according to various molecular fingerprints. We then use the Transformer-based RXNMapper model to understand structural relationships between drugs, and its confidence score to distinguish between pairs related by chemically feasible transformations and pairs related by alchemical transmutations. This analysis reveals a diversity of structural similarity relationships that are otherwise difficult to analyze simultaneously. We exemplify this approach by visualizing FDA-approved drugs, EGFR inhibitors, and polymyxin B analogs.

5.
ChemMedChem ; 17(17): e202200291, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35880810

RESUMO

Most antimicrobial peptides (AMPs) and anticancer peptides (ACPs) fold into membrane disruptive cationic amphiphilic α-helices, many of which are however also unpredictably hemolytic and toxic. Here we exploited the ability of recurrent neural networks (RNN) to distinguish active from inactive and non-hemolytic from hemolytic AMPs and ACPs to discover new non-hemolytic ACPs. Our discovery pipeline involved: 1) sequence generation using either a generative RNN or a genetic algorithm, 2) RNN classification for activity and hemolysis, 3) selection for sequence novelty, helicity and amphiphilicity, and 4) synthesis and testing. Experimental evaluation of thirty-three peptides resulted in eleven active ACPs, four of which were non-hemolytic, with properties resembling those of the natural ACP lasioglossin III. These experiments show the first example of direct machine learning guided discovery of non-hemolytic ACPs.


Assuntos
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular , Hemólise , Humanos , Aprendizado de Máquina
6.
Cell Rep Phys Sci ; 3(12): 101161, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36632208

RESUMO

Membrane-disruptive amphiphilic antimicrobial peptides behave as intrinsically disordered proteins by being unordered in water and becoming α-helical in contact with biological membranes. We recently discovered that synthesizing the α-helical antimicrobial peptide dendrimer L-T25 ((KL)8(KKL)4(KLL)2 KKLL) using racemic amino acids to form stereorandomized sr-T25, an analytically pure mixture of all possible diastereoisomers of L-T25, preserved antibacterial activity but abolished hemolysis and cytotoxicity, pointing to an intrinsically disordered antibacterial conformation and an α-helical cytotoxic conformation. In this study, to identify non-toxic intrinsically disordered homochiral antimicrobial peptide dendrimers (AMPDs), we surveyed sixty-three sr-analogs of sr-T25 selected by virtual screening. One of the analogs, sr-X18 ((KL)8(KLK)4(KLL)2 KLLL), lost antibacterial activity as L-enantiomer and became hemolytic due to α-helical folding. By contrast, the L- and D-enantiomers of sr-X22 ((KL)8(KL)4(KKLL)2 KLKK) were equally antibacterial, non-hemolytic, and non-toxic, implying an intrinsically disordered bioactive conformation. Screening stereorandomized libraries may be generally useful to identify or optimize intrinsically disordered bioactive peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA