Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 139(7): 1598-607, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27216146

RESUMO

Like many cancers, an early diagnosis of melanoma is fundamental to ensure a good prognosis, although an important proportion of stage I-II patients may still develop metastasis during follow-up. The aim of this work was to discover serum biomarkers in patients diagnosed with primary melanoma that identify those at a high risk of developing metastasis during the follow-up period. Proteomic and mass spectrophotometry analysis was performed on serum obtained from patients who developed metastasis during the first years after surgery for primary tumors and compared with that from patients who remained disease-free for more than 10 years after surgery. Five proteins were selected for validation as prognostic factors in 348 melanoma patients and 100 controls by ELISA: serum amyloid A and clusterin; immune system proteins; the cell adhesion molecules plakoglobin and vitronectin and the antimicrobial protein dermcidin. Compared to healthy controls, melanoma patients have high serum levels of these proteins at the moment of melanoma diagnosis, although the specific values were not related to the histopathological stage of the tumors. However, an analysis based on classification together with multivariate statistics showed that tumor stage, vitronectin and dermcidin levels were associated with the metastatic progression of patients with early-stage melanoma. Although melanoma patients have increased serum dermcidin levels, the REPTree classifier showed that levels of dermcidin <2.98 µg/ml predict metastasis in AJCC stage II patients. These data suggest that vitronectin and dermcidin are potent biomarkers of prognosis, which may help to improve the personalized medical care of melanoma patients and their survival.


Assuntos
Biomarcadores Tumorais/sangue , Melanoma/sangue , Melanoma/patologia , Peptídeos/sangue , Vitronectina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Adulto Jovem
2.
Inflamm Allergy Drug Targets ; 9(3): 146-57, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20632959

RESUMO

Histamine has been demonstrated to be involved in cell proliferation, embryonic development, and tumour growth. These various biological effects are mediated through the activation of specific histamine receptors (H1, H2, H3, and H4) that differ in their tissue expression patterns and functions. Although many in vitro and in vivo studies of the modulatory roles of histamine in tumour development and metastasis have been reported, the effect of histamine in the progression of some types of tumours remains controversial; however, recent findings on the role of histamine in the immune system have shed new light on this question. This review focuses on the recent advances in understanding the roles of histamine and its receptors in tumour biology. We report our recent observations of the anti-tumoural effect of H1 histamine antagonists on experimental and human melanomas. We have found that in spite of exogenous histamine stimulated human melanoma cell proliferation, clonogenic ability and migration activity in a dose-dependent manner, the melanoma tumour growth was not modulated by in vivo histamine treatment. On the contrary, terfenadine-treatment in vitro induced melanoma cell death by apoptosis and in vivo terfenadine treatment significantly inhibited tumour growth in murine models. These observations increase our understanding of cancer biology and may inspire novel anticancer therapeutic strategies.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Histamina/fisiologia , Melanoma/metabolismo , Receptores Histamínicos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histamina/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Humanos , Melanoma/patologia , Terfenadina/farmacologia
3.
Carcinogenesis ; 29(3): 500-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18174239

RESUMO

In our previous works, we have demonstrated that terfenadine (TEF) induces DNA damage and apoptosis in human melanoma cell lines. In this present work, we have studied the effect of histamine on viability of A375 human melanoma cells and the cell-signalling pathways through which TEF may induce its apoptotic effect. We have found that exogenous histamine stimulates A375 melanoma cell proliferation in a dose- and time-dependent manner. Moreover, TEF-induced apoptosis seems to occur via other cellular pathways independent of the histamine-signalling system since co-treatment of histamine with TEF did not protect melanoma cells from the cytotoxic effect of TEF, and alpha fluoromethylhistidine did not induce the same cytotoxic effect of TEF. In addition, we have observed that knocking down the H1 histamine receptor (HRH1) by small interference RNA approach protects melanoma cells only slightly from TEF-induced apoptosis. To explore the molecular mechanisms responsible for histamine and TEF effect on the cell growth, we analysed intracellular cyclic nucleotides and Ca(2+) levels. TEF did not modify intracellular levels of cyclic adenosine 3',5'-monophosphate and cyclic guanine 3',5'-monophosphate; however, TEF induced a very sharp and sustained increase in cytosolic Ca(2+) levels in A375 melanoma cells. On the contrary, histamine did not modulate intracellular Ca(2+). TEF-induced Ca(2+) rise and apoptosis appear to be phospholipase C (PLC) dependent since neomycin and U73122, two inhibitors of PLC, abolished cytosolic Ca(2+) increase and protected the cells completely from cell death. Furthermore, inhibition of tyrosine kinase activity by genistein blocked cytosolic Ca(2+) rise and TEF-induced apoptosis. These results suggest that TEF modulates Ca(2+) homeostasis and induces apoptosis through other cellular pathways involving tyrosine kinase activity, independently of HRH1.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Homeostase , Melanoma/patologia , Proteínas Tirosina Quinases/metabolismo , Receptores Histamínicos H1/metabolismo , Terfenadina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Primers do DNA , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Humanos , Fosfatos de Inositol/metabolismo , Melanoma/enzimologia , Melanoma/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA