Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37461610

RESUMO

The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

2.
Am J Respir Cell Mol Biol ; 66(3): 252-259, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34784491

RESUMO

Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways. We will also discuss important differences in which trefoil member tracks with homeostasis and disease between humans and mice, which poses a challenge for research in this area. Moreover, we discuss new evidence supporting newly identified receptor binding partners in the leucine-rich repeat and immunoglobulin-like domain-containing NoGo (LINGO) family in mediating the biological effects of TFF proteins in mouse models of epithelial repair and infection. Recent advances in our knowledge regarding TFF peptides suggest that they may be reasonable therapeutic targets in the treatment of upper and lower airway diseases of diverse etiologies. Further work understanding their role in airway homeostasis, repair, and inflammation will benefit from these newly uncovered receptor-ligand interactions.


Assuntos
Fatores Trefoil , Animais , Pulmão/metabolismo , Camundongos , Peptídeos/metabolismo , Proteínas , Fator Trefoil-2
3.
Cell Host Microbe ; 29(6): 862-866, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33951460

RESUMO

Black/African Americans, Hispanic/Latinxs, and Native Americans remain chronically underrepresented in science, technology, engineering, and math (STEM). Values misalignment, implicit/explicit bias, and hypercompetition in the funding climate disproportionately affect underrepresented minority (URM) postdoctoral fellows transitioning into faculty positions. URM scientists must increase and be given opportunities to establish independent research programs.


Assuntos
Mobilidade Ocupacional , Docentes , Grupos Minoritários , Escolha da Profissão , Engenharia , Humanos , Matemática , Pesquisadores , Ciência , Tecnologia , Estados Unidos
4.
Ann Allergy Asthma Immunol ; 126(2): 143-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122124

RESUMO

OBJECTIVE: To review the latest discoveries regarding the role of tuft cells in the pathogenesis of chronic rhinosinusitis (CRS) with nasal polyposis and asthma. DATA SOURCES: Reviews and primary research manuscripts were identified from PubMed, Google, and bioRxiv using the search words airway epithelium, nasal polyposis, CRS or asthma and chemoreceptor cell, solitary chemosensory cell, brush cell, microvillus cell, and tuft cell. STUDY SELECTIONS: Studies were selected on the basis of novelty and likely relevance to the functions of tuft cells in chronic inflammatory diseases in the upper and lower airways. RESULTS: Tuft cells coordinate a variety of immune responses throughout the body. After the activation of bitter-taste receptors, tuft cells coordinate the secretion of antimicrobial products by adjacent epithelial cells and initiate the calcium-dependent release of acetylcholine resulting in neurogenic inflammation, including mast cell degranulation and plasma extravasation. Tuft cells are also the dominant source of interleukin-25 and a significant source of cysteinyl leukotrienes that play a role in initiating inflammatory processes in the airway. Tuft cells have also been found to seem de novo in the distal airway after a viral infection, implicating these cells in dysplastic remodeling in the distal lung in the pathogenesis of asthma. CONCLUSION: Tuft cells bridge innate and adaptive immunes responses and play an upstream role in initiating type 2 inflammation in the upper and possibly the lower airway. The role of tuft cells in respiratory pathophysiology must be further investigated, because tuft cells are putative high-value therapeutic targets for novel therapeutics in CRS with nasal polyps and asthma.


Assuntos
Asma/imunologia , Células Epiteliais/imunologia , Pólipos Nasais/imunologia , Sistema Respiratório/citologia , Rinite/imunologia , Sinusite/imunologia , Acetilcolina/imunologia , Animais , Doença Crônica , Eicosanoides/imunologia , Humanos , Interleucina-17/imunologia , Sistema Respiratório/imunologia
5.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824323

RESUMO

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Animais , Brônquios/imunologia , Citocinas/imunologia , Interleucina-13/imunologia , Interleucina-33/imunologia , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Linfopoietina do Estroma do Timo
6.
Immunity ; 44(4): 821-32, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26850657

RESUMO

MicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation. Among these were miR-24 and miR-27, miRNAs coexpressed from two genomic clusters, which each functioned independently to limit interleukin-4 (IL-4) production. Mice lacking both clusters in T cells displayed increased Th2 cell responses and tissue pathology in a mouse model of asthma. Gene expression and pathway analyses placed miR-27 upstream of genes known to regulate Th2 cells. They also identified targets not previously associated with Th2 cell biology which regulated IL-4 production in unbiased functional testing. Thus, elucidating the biological function and target repertoire of miR-24 and miR-27 reveals regulators of Th2 cell biology.


Assuntos
Asma/imunologia , Interleucina-4/biossíntese , MicroRNAs/genética , Células Th2/imunologia , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Interleucina-4/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Família Multigênica/genética , Análise de Sequência de RNA , Células Th2/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA