Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875221

RESUMO

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Assuntos
Glucoquinase , Transportador de Glucose Tipo 2 , Glucose , Células Secretoras de Insulina , Fator de Crescimento Neural , Animais , Masculino , Ratos , Células Cultivadas , Glucoquinase/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Ratos Wistar
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768281

RESUMO

Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.


Assuntos
Síndrome Metabólica , Fator de Crescimento Neural , Humanos , Síndrome Metabólica/metabolismo , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
3.
Cell Commun Signal ; 20(1): 154, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224569

RESUMO

BACKGROUND: Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR are largely unknown in both sexes. Sexual dimorphism in insulin sensitivity is observed since early stages of development. We propose that during periods of accelerated growth, such as around weaning, at postnatal day 20 (p20) in rats, the kinase S6K1 is overactivated and induces impairment of insulin signaling in its target organs. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. METHODS: We determined systemic insulin sensitivity through insulin tolerance tests, glucose tolerance tests, and blood glucose and insulin levels under fasting and fed conditions at p20 and adult male and female Wistar rats. Furthermore, we quantified levels of S6K1 phosphorylated at threonine 389 (T389) (active form) and its target IRS1 phosphorylated at serine 1101 (S1101) (inhibited form). In addition, we assessed insulin signal transduction by measuring levels of Akt phosphorylated at serine 473 (S473) (active form) in white adipose tissue and skeletal muscle through western blot. Finally, we determined the presence and function of GLUT4 in the plasma membrane by measuring the glucose uptake of adipocytes. Results were compared using two-way ANOVA (With age and sex as factors) and one-way ANOVA with post hoc Tukey's tests or t-student test in each corresponding case. Statistical significance was considered for P values < 0.05. RESULTS: We found that both male and female p20 rats have elevated levels of glucose and insulin, low systemic insulin sensitivity, and glucose intolerance. We identified sex- and tissue-related differences in the activation of insulin signaling proteins in p20 rats compared to adult rats. CONCLUSIONS: Male and female p20 rats present physiological insulin resistance with differences in the protein activation of insulin signaling. This suggests that S6K1 overactivation and the resulting IRS1 inhibition by phosphorylation at S1101 may modulate to insulin sensitivity in a sex- and tissue-specific manner. Video Abstract.


Insulin regulates the synthesis of carbohydrates, lipids and proteins differently between males, and females. One of its primary functions is maintaining adequate blood glucose levels favoring glucose entry in muscle and adipose tissue after food consumption. Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is frequently associated with metabolic dysfunction such as inflammation, obesity, or type 2 diabetes. However, physiological IR develops in healthy individuals during periods of rapid growth, pregnancy, or aging by mechanisms not fully understood. We studied the postnatal development, specifically around weaning at postnatal day 20 (p20) of Wistar rats. In previous works, we identified insulin resistance during this period in male rats. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. We found that p20 rats of both sexes have elevated blood glucose and insulin levels, low systemic insulin sensitivity, and glucose intolerance. We identified differences in insulin-regulated protein activation (S6K1, IRS1, Akt, and GLUT4) between sexes in different tissues and adipose tissue depots. Studying these mechanisms and their differences between males and females is essential to understanding insulin actions and their relationship with the possible development of metabolic diseases in both sexes.


Assuntos
Resistência à Insulina , Animais , Glicemia/metabolismo , Feminino , Glucose/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Serina/metabolismo , Caracteres Sexuais , Treonina/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 878280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651975

RESUMO

Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.


Assuntos
Arsênio , Diabetes Mellitus Tipo 2 , Poluentes Ambientais , Síndrome Metabólica , Arsênio/toxicidade , Diabetes Mellitus Tipo 2/complicações , Humanos , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/complicações , Fatores de Risco
5.
Front Endocrinol (Lausanne) ; 12: 690484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220716

RESUMO

The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.


Assuntos
Tecido Adiposo/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Caracteres Sexuais , Animais , Feminino , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo
6.
Endocr Connect ; 9(9): 890-902, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33069157

RESUMO

OBJECTIVE: We assessed the sex-specific differences in the molecular mechanisms of insulin resistance in muscle and adipose tissue, in a MS rat model induced by a high sucrose diet. METHODS: Male, female, and ovariectomized female Wistar rats were randomly distributed in control and high-sucrose diet (HSD) groups, supplemented for 24 weeks with 20% sucrose in the drinking water. At the end, we assessed parameters related to MS, analyzing the effects of the HSD on critical nodes of the insulin signaling pathway in muscle and adipose tissue. RESULTS: At the end of the treatment, HSD groups of both sexes developed obesity, with a 15, 33 and 23% of body weight gain in male, female, and OVX groups respectively, compared with controls; mainly related to hypertrophy of peripancreatic and gonadal adipose tissue. They also developed hypertriglyceridemia, and liver steatosis, with the last being worse in the HSD females. Compared to the control groups, HSD rats had higher IL1B and TNFA levels and insulin resistance. HSD females were more intolerant to glucose than HSD males. Our observations suggest that insulin resistance mechanisms include an increase in phosphorylated AKT(S473) form in HSD male and female groups and a decrease in phosphorylated P70S6K1(T389) in the HSD male groups from peripancreatic adipose tissue. While in gonadal adipose tissue the phosphorylated form of AKT decreased in HSD females, but not in HSD males. Finally, HSD groups showed a reduction in p-AKT levels in gastrocnemius muscle. CONCLUSION: A high-sucrose diet induces MS and insulin resistance with sex-associated differences and in a tissue-specific manner.

7.
Gac Med Mex ; 155(5): 541-545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695236

RESUMO

The metabolic syndrome describes a group of signs that increase the likelihood for developing type 2 diabetes mellitus, cardiovascular diseases and some types of cancer. The action of insulin depends on its binding to membrane receptors on its target cells. We wonder if blood insulin could travel bound to proteins and if, in the presence of hyperinsulinemia, a soluble insulin receptor might be generated. We used young adult Wistar rats (which have no predisposition to obesity or diabetes), whose drinking water was added 20 % of sugar and that were fed a standard diet ad libitum for two and six months. They were compared with control rats under the same conditions, but that had running water for consumption. At two months, the rats developed central obesity, moderate hypertension, high triglyceride levels, hyperinsulinemia, glucose intolerance and insulin resistance, i.e. metabolic syndrome. Electrophoresis of the rats' plasma proteins was performed, followed by Western Blot (WB) for insulin and for the outer portion of the insulin receptor. The bands corresponding to insulin and to the receptor external part were at the same molecular weight level, 25-fold higher than that of free insulin. We demonstrated that insulin, both in control animals and in those with hyperinsulinemia, travels bound to the receptor outer portion (ectodomain), which we called soluble insulin receptor, and that is released al higher amounts in response to plasma insulin increase; in rats with metabolic syndrome and hyperinsulinemia, plasma levels are much higher than in controls. Soluble insulin receptor increase in blood might be an early sign of metabolic syndrome.


El síndrome metabólico es un conjunto de signos que aumentan la probabilidad de desarrollar diabetes mellitus tipo 2, enfermedades cardiovasculares y algunos tipos de cáncer. La acción de la insulina depende de su unión a los receptores en la membrana de sus células diana. Para responder a la pregunta de si la insulina en la sangre podría viajar unida a proteínas y si en presencia de hiperinsulinemia podría generarse un receptor soluble de insulina, utilizamos ratas wistar (no tienen predisposición a la obesidad ni a la diabetes), adultas jóvenes, a cuya agua de consumo se adicionó 20 % de azúcar y a las que se les administró dieta estándar ad libitum, durante dos y seis meses; fueron comparadas con ratas control que tuvieron las mismas condiciones, pero con agua corriente para consumo. A los dos meses, las ratas desarrollaron obesidad central, hipertensión moderada, triglicéridos altos, hiperinsulinemia, intolerancia a la glucosa y resistencia a la insulina, es decir, síndrome metabólico. Se realizó electroforesis de las proteínas del plasma de las ratas, seguida de Western Blot para insulina y para la porción externa del receptor de insulina. Las bandas correspondientes a la insulina y la parte externa del receptor estaban al mismo nivel de peso molecular, 25 veces mayor que el de la insulina libre. Demostramos que la insulina, tanto en animales testigo como en aquellos con hiperinsulinemia, viaja unida a la porción externa del receptor (ectodominio), al cual denominamos receptor soluble de insulina, que se libera en mayor cantidad en respuesta al incremento en la insulina plasmática; en las ratas con síndrome metabólico e hiperinsulinemia, los niveles en plasma son mucho mayores que en los controles. El incremento del receptor soluble de insulina en sangre podría ser un dato temprano de síndrome metabólico.


Assuntos
Antígenos CD/sangue , Insulina/sangue , Síndrome Metabólica/sangue , Receptor de Insulina/sangue , Animais , Antígenos CD/fisiologia , Western Blotting , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Eletroforese , Hiperinsulinismo/sangue , Insulina/fisiologia , Resistência à Insulina , Síndrome Metabólica/etiologia , Ratos , Ratos Wistar , Receptor de Insulina/fisiologia
8.
Gac. méd. Méx ; 155(5): 500-503, Sep.-Oct. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1286550

RESUMO

The metabolic syndrome describes a group of signs that increase the likelihood for developing type 2 diabetes mellitus, cardiovascular diseases and some types of cancer. The action of insulin depends on its binding to membrane receptors on its target cells. We wonder if blood insulin could travel bound to proteins and if, in the presence of hyperinsulinemia, a soluble insulin receptor might be generated. We used young adult Wistar rats (which have no predisposition to obesity or diabetes), whose drinking water was added 20 % of sugar and that were fed a standard diet ad libitum for two and six months. They were compared with control rats under the same conditions, but that had running water for consumption. At two months, the rats developed central obesity, moderate hypertension, high triglyceride levels, hyperinsulinemia, glucose intolerance and insulin resistance, i.e., metabolic syndrome. Electrophoresis of the rats’ plasma proteins was performed, followed by Western Blot (WB) for insulin and for the outer portion of the insulin receptor. The bands corresponding to insulin and to the receptor external part were at the same molecular weight level, 25-fold higher than that of free insulin. We demonstrated that insulin, both in control animals and in those with hyperinsulinemia, travels bound to the receptor outer portion (ectodomain), which we called soluble insulin receptor, and that is released al higher amounts in response to plasma insulin increase; in rats with metabolic syndrome and hyperinsulinemia, plasma levels are much higher than in controls. Soluble insulin receptor increase in blood might be an early sign of metabolic syndrome.


Assuntos
Humanos , Animais , Ratos , Resistência à Insulina/fisiologia , Receptor de Insulina/metabolismo , Síndrome Metabólica/etiologia , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Hipertrigliceridemia/etiologia , Ratos Wistar , Intolerância à Glucose/etiologia , Síndrome Metabólica/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Obesidade Abdominal/etiologia , Hipertensão/etiologia , Insulina/sangue
9.
Gac Med Mex ; 155(5): 500-503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32091018

RESUMO

The metabolic syndrome describes a group of signs that increase the likelihood for developing type 2 diabetes mellitus, cardiovascular diseases and some types of cancer. The action of insulin depends on its binding to membrane receptors on its target cells. We wonder if blood insulin could travel bound to proteins and if, in the presence of hyperinsulinemia, a soluble insulin receptor might be generated. We used young adult Wistar rats (which have no predisposition to obesity or diabetes), whose drinking water was added 20 % of sugar and that were fed a standard diet ad libitum for two and six months. They were compared with control rats under the same conditions, but that had running water for consumption. At two months, the rats developed central obesity, moderate hypertension, high triglyceride levels, hyperinsulinemia, glucose intolerance and insulin resistance, i.e., metabolic syndrome. Electrophoresis of the rats' plasma proteins was performed, followed by Western Blot (WB) for insulin and for the outer portion of the insulin receptor. The bands corresponding to insulin and to the receptor external part were at the same molecular weight level, 25-fold higher than that of free insulin. We demonstrated that insulin, both in control animals and in those with hyperinsulinemia, travels bound to the receptor outer portion (ectodomain), which we called soluble insulin receptor, and that is released al higher amounts in response to plasma insulin increase; in rats with metabolic syndrome and hyperinsulinemia, plasma levels are much higher than in controls. Soluble insulin receptor increase in blood might be an early sign of metabolic syndrome.


Assuntos
Hiperinsulinismo/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Síndrome Metabólica/etiologia , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Intolerância à Glucose/etiologia , Humanos , Hipertensão/etiologia , Hipertrigliceridemia/etiologia , Insulina/sangue , Síndrome Metabólica/metabolismo , Obesidade Abdominal/etiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA