Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851539

RESUMO

Persistent high-risk human papillomavirus infection is the main risk factor for cervical cancer establishment, where the viral oncogenes E6 and E7 promote a cancerous phenotype. Metabolic reprogramming in cancer involves alterations in glutamine metabolism, also named glutaminolysis, to provide energy for supporting cancer processes including migration, proliferation, and production of reactive oxygen species, among others. The aim of this work was to analyze the effect of HPV16 E6 and E7 oncoproteins on the regulation of glutaminolysis and its contribution to cell proliferation. We found that the E6 and E7 oncoproteins exacerbate cell proliferation in a glutamine-dependent manner. Both oncoproteins increased the levels of transporter SNAT1, as well as GLS2 and GS enzymes; E6 also increased LAT1 transporter protein levels, while E7 increased ASCT2 and xCT. Some of these alterations are also regulated at a transcriptional level. Consistently, the amount of SNAT1 protein decreased in Ca Ski cells when E6 and E7 expression was knocked down. In addition, we demonstrated that cell proliferation was partially dependent on SNAT1 in the presence of glutamine. Interestingly, SNAT1 expression was higher in cervical cancer compared with normal cervical cells. The high expression of SNAT1 was associated with poor overall survival of cervical cancer patients. Our results indicate that HPV oncoproteins exacerbate glutaminolysis supporting the malignant phenotype.


Assuntos
Glutamina , Neoplasias do Colo do Útero , Feminino , Humanos , Proliferação de Células , Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/genética , Sistema A de Transporte de Aminoácidos/metabolismo
2.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497200

RESUMO

High-risk human papillomavirus (HPV) infection is the main risk factor for cervical cancer (CC) development, where the continuous expression of E6 and E7 oncoproteins maintain the malignant phenotype. In Mexico, around 70% of CC cases are diagnosed in advanced stages, impacting the survival of patients. The aim of this work was to identify biomarkers affected by HPV-16 E6 and E7 oncoproteins that impact the prognosis of CC patients. Expression profiles dependent on E6 and E7 oncoproteins, as well as their relationship with biological processes and cellular signaling pathways, were analyzed in CC cells. A comparison among expression profiles of E6- and E7-expressing cells and that from a CC cohort obtained from The Cancer Genome Atlas (TCGA) demonstrated that the expression of 13 genes impacts the overall survival (OS). A multivariate analysis revealed that the downregulated expression of RIPOR2 was strongly associated with a worse OS. RIPOR2, including its transcriptional variants, were overwhelmingly depleted in E6- and E7-expressing cells. Finally, in a Mexican cohort, it was found that in premalignant cervical lesions, RIPOR2 expression decreases as the lesions progress; meanwhile, decreased RIPOR2 expression was also associated with a worse OS in CC patients.


Assuntos
Moléculas de Adesão Celular , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Prognóstico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Moléculas de Adesão Celular/genética , Infecções por Papillomavirus/genética
3.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326003

RESUMO

Cancer cells exhibit exacerbated metabolic activity to maintain their accelerated proliferation and microenvironmental adaptation in order to survive under nutrient-deficient conditions. Tumors display an increase in glycolysis, glutaminolysis and fatty acid biosynthesis, which provide their energy source. Glutamine is critical for fundamental cellular processes, where intermediate metabolites produced through glutaminolysis are necessary for the maintenance of mitochondrial metabolism. These include antioxidants to remove reactive oxygen species, and the generation of the nonessential amino acids, purines, pyrimidines and fatty acids required for cellular replication and the activation of cell signaling. Some cancer cells are highly dependent on glutamine consumption since its catabolism provides an anaplerotic pathway to feed the Krebs cycle. Intermediate members of the glutaminolysis pathway have been found to be deregulated in several types of cancers and have been proposed as therapeutic targets and prognostic biomarkers. This review summarizes the main players in the glutaminolysis pathway, how they have been found to be deregulated in cancer and their implications for cancer maintenance. Furthermore, non-coding RNAs are now recognized as new participants in the regulation of glutaminolysis; therefore, their involvement in glutamine metabolism in cancer is discussed in detail.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA não Traduzido/genética , Animais , Antineoplásicos/farmacologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Interferência de RNA , RNA Circular/genética
4.
Cancer Med ; 7(12): 6170-6181, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370649

RESUMO

Hepatocellular carcinoma (HCC) is a deadly malignancy with limited treatment options. Recently, it was found that Dasatinib treatment led to synthetic lethality in c-Myc high-expressing human cancer cells due to inhibition of p-Lyn. Overexpression of c-Myc is frequently seen in human HCC. We investigated the sensitivity to Dasatinib in vitro using HCC cell lines and in vivo using c-Myc mouse HCC model. We found that HCC cell line responsiveness to Dasatinib varied significantly. However, there was no correlation between c-Myc expression and IC50 to Dasatinib. In c-Myc-induced HCC in mice, tumors continued to grow despite Dasatinib treatment, although the eventual tumor burden was lower in Dasatinib treatment cohort. Molecular analyses revealed that Dasatinib was effective in inhibiting p-Src, but not p-Lyn, in HCC. Importantly, we found that in HCC cell lines as well as c-Myc mouse HCC, Dasatinib treatment induced up regulation of activated/phosphorylated (p)-focal adhesion kinase(FAK). Concomitant treatment of HCC cell lines with Dasatinib and FAK inhibitor prevented Dasatinib-induced FAK activation, leading to stronger growth restraint. Altogether, our results suggest that Dasatinib may have limited efficacy as single agent for HCC treatment. Combined treatment with Dasatinib with FAK inhibitor might represent a novel therapeutic approach against HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Dasatinibe/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Hepáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Dasatinibe/uso terapêutico , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA