Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849420

RESUMO

The impact of subacute rumen acidosis (SARA) on the rumen bacterial community has been frequently studied in in vivo trials. Here we investigated whether these alterations can be mirrored by using the rumen simulation technique (RUSITEC) as an in vitro model for this disease. We hypothezised that the bacterial community fully recovers after a subacute ruminal acidosis challenge. We combined a PacBio nearly full-length 16S rRNA gene analysis with 16S rRNA gene Illumina MiSeq sequencing of the V4 hypervariable region. With this hybrid approach, we aimed to get an increased taxonomic resolution of the most abundant bacterial groups and an overview of the total bacterial diversity. The experiment consisted of a control period I and a SARA challenge and ended after a control period II, of which each period lasted 5 d. Subacute acidosis was induced by applying two buffer solutions, which were reduced in their buffering capacity (SARA buffers) during the SARA challenge. Two control groups were constantly infused with the standard buffer solution. Furthermore, the two SARA buffers were combined with three different feeding variations, which differed in their concentrate-to-hay ratio. The induction of SARA led to a decrease in pH below 5.8, which then turned into a steady-state SARA. Decreasing pH values led to a reduction in bacterial diversity and richness. Moreover, the diversity of solid-associated bacteria was lower for high concentrate groups throughout all experimental periods. Generally, Firmicutes and Bacteroidetes were the predominant phyla in the solid and the liquid phase. During the SARA period, we observed a decrease in fibrolytic bacteria although lactate-producing and -utilizing families increased in certain treatment groups. The genera Lactobacillus and Prevotella dominated during the SARA period. With induction of the second control period, most bacterial groups regained their initial abundance. In conclusion, this in vitro model displayed typical bacterial alterations related to SARA and is capable of recovery from bouts of SARA. Therefore, this model can be used to mimic SARA under laboratory conditions and may contribute to a reduction in animal experiments.

2.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1678-1689, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32596984

RESUMO

Subacute rumen acidosis (SARA) is a common problem in dairy cattle. High-concentrate rations lead to an accumulation of short-chain fatty acids (SCFA) in the rumen and a subsequent decrease in ruminal pH. As SARA impairs animal welfare and productivity, numerous in vivo studies are focusing on evaluation of prevention strategies. In vitro models can support this research and reduce animal numbers and experimental costs. We used different diets and buffer compositions to induce SARA in the rumen simulation technique (Rusitec) and investigated the recovery process. The experiment consisted of an equilibration period (7 days), a first control period, a SARA period and a second control period (5 days each). During the SARA period, SARA was induced by infusing SARA1 or SARA2 buffer with reduced bicarbonate (20 mmol/L and 25 mmol/L) and phosphate (both 10 mmol/L) contents compared to a modified McDougall's buffer (bicarbonate 97.9 mmol/L, phosphates 20 mmol/L). Additionally, we compared three feeding strategies, which differed in the concentrate-to-roughage ratio (30:70, 70:30, changing ratio: 30% concentrate in control periods and 70% concentrate in SARA period). During the SARA period, the pH decreased to a constant value below the SARA thresholds of pH 5.8 and 5.6, whereas lactate concentrations remained low. The total SCFA production rate declined 3 days after SARA induction, and the molar proportion of acetate decreased. The decrease in pH and SCFA production was more pronounced for SARA1 buffer. The high-concentrate diet reduced the molar proportion of acetate and increased NH3 -N concentrations. During the second control period, most parameters recovered. In conclusion, SARA conditions were successfully induced in the Rusitec. However, we observed a higher influence of buffer composition than of concentrate proportions on most biochemical parameters. Nearly all changes were reversible. This model can be applied to test acidosis prevention strategies prior to animal experiments.


Assuntos
Acidose , Doenças dos Bovinos , Acidose/veterinária , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Dieta/veterinária , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Lactação , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA