Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 580, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890606

RESUMO

BACKGROUND: Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS: OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS: The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.


Assuntos
Antioxidantes , Glycine max , Ozônio , Estresse Fisiológico , Ozônio/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Capsicum/efeitos dos fármacos , Capsicum/fisiologia , Capsicum/metabolismo , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/farmacologia
2.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616553

RESUMO

Polyurethane (PU) is a widely used polymer with a highly complex recycling process due to its chemical structure. Eliminating polyurethane is limited to incineration or accumulation in landfills. Biodegradation by enzymes and microorganisms has been studied for decades as an effective method of biological decomposition. In this study, Tenebrio molitor larvae (T. molitor) were fed polyurethane foam. They degraded the polymer by 35% in 17 days, resulting in a 14% weight loss in the mealworms. Changes in the T. molitor gut bacterial community and diversity were observed, which may be due to the colonization of the species associated with PU degradation. The physical and structural biodegradation of the PU, as achieved by T. molitor, was observed and compared to the characteristics of the original PU (PU-virgin) using Fourier Transform InfraRed spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Scanning Electron Microphotography (SEM).

3.
Heliyon ; 5(6): e01958, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31294110

RESUMO

This work presents a new bioprocess process for the extraction of bioactive components from soy pulp by-product (okara) using an enzymatic technology that was compared to a conventional water extraction. Okara is rich in fiber, fat, protein, and bioactive compounds such as isoflavones but its low solubility hampers the use in food and fertilizer industry. After the enzymatic attack with endoproteases half of the original insoluble proteins were converted into soluble peptides. Linked to this process occured the solubilization of isoflavones trapped in the insoluble protein matrix. We were able to extract up to 62.5% of the total isoflavones content, specially aglycones, the more bioactive isoflavone forms, whose values rose 9.12 times. This was probably due to the increased solubilization and interconversion from the original isoflavones. In conclusion, our process resulted in the formulation of a new functional product rich in aglycones and bioactive peptides with higher antioxidant potency than the original source. Therefore, we propose that the enzymatic extraction of okara bioactive compounds is an advantageous tool to replace conventional extraction.

4.
Environ Technol ; 40(16): 2073-2084, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29400642

RESUMO

In this work okara (OK), a by-product of soy milk manufacturing, is submitted to an enzymatic hydrolysis and a fermentative process to produce different soil biostimulants (BS): EH, hydrolysate obtained by the enzymatic process; FHEB, fermentation broth with Bacillus licheniformis and the enzymes secreted during the fermentation; FHE, fermentation broth without bacteria and FH, the FHE hydrolysate in which enzymes were denatured. Enzymatic hydrolysates showed a different chemical composition compared with fermented hydrolysates and OK. It had a higher protein concentration as well as C, P and K. The proteins of OK were converted into peptides with a lower molecular weight, the fermented hydrolysates being those with the lowest molecular weight profile. The influences of hydrolysates and OK were tested in soil, finding that ß-glucosidase, phosphatase and dehydrogenase activities were stimulated by every treatment. However, it was observed that EH produced a greater stimulation of dehydrogenase and phosphatase than both OK and fermented BS. The bacterial and fungal phospholipid fatty acids were also higher in soils amended with BS than those of the control and soils with OK. It has also been found that ß-glucosidase, phosphatase and microbial biomass were dose-dependent in every treatment, but dehydrogenase only was dose-dependent in EH and OK treatments.


Assuntos
Bacillus licheniformis , Solo , Fermentação , Hidrólise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA