Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 21(10): 963-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31437536

RESUMO

The transcriptional coactivator Amplified in Breast Cancer 1 (AIB1) plays a major role in the progression of hormone and HER2-dependent breast cancers but its role in triple negative breast cancer (TNBC) is undefined. Here, we report that established TNBC cell lines, as well as cells from a TNBC patient-derived xenograft (PDX) that survive chemotherapy treatment in vitro express lower levels of AIB1 protein. The surviving cell population has an impaired tube-formation phenotype when cultured onto basement membrane, a property shared with TNBC cells that survive shRNA-mediated depletion of AIB1 (AIB1LOW cells). DNA analysis by exome sequencing revealed that AIB1LOW cells represent a distinct subpopulation. Consistent with their in vitro phenotype AIB1LOW cells implanted orthotopically generated slower growing tumors with less capacity for pulmonary metastases. Gene expression analysis of cultured cells and tumors revealed that AIB1LOW cells display a distinct expression signature of genes in pro-inflammatory pathways, cell adhesion, proteolysis and tissue remodeling. Interestingly, the presence of this AIB1LOW expression signature in breast cancer specimens is associated with shorter disease free survival of chemotherapy treated patients. We concluded that TNBC cell lines contain heterogeneous populations with differential dependence on AIB1 and that the gene expression pattern of AIB1LOW cells may represent a signature indicative of poor response to chemotherapy in TNBC patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Coativador 3 de Receptor Nuclear/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Evolução Clonal/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Fenótipo , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Sequenciamento do Exoma
2.
Oncogene ; 33(23): 3033-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23851504

RESUMO

The key molecular events required for the formation of ductal carcinoma in situ (DCIS) and its progression to invasive breast carcinoma have not been defined. Here, we show that the nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is expressed at low levels in normal breast but is highly expressed in DCIS lesions. This is of significance since reduction of AIB1 in human MCFDCIS cells restored a more normal three-dimensional mammary acinar structure. Reduction of AIB1 in MCFDCIS cells, both before DCIS development or in existing MCFDCIS lesions in vivo, inhibited tumor growth and led to smaller, necrotic lesions. AIB1 reduction in MCFDCIS cells was correlated with significant reduction in the CD24-/CD44+ breast cancer-initiating cell (BCIC) population, and a decrease in myoepithelial progenitor cells in the DCIS lesions in vitro and in vivo. The loss of AIB1 in MCFDCIS cells was also accompanied by a loss of expression of NOTCH 2, 3 and 4, JAG2, HES1, GATA3, human epidermal growth factor receptor 2 (HER2) and HER3 in vivo. These signaling molecules have been associated with differentiation of breast epithelial progenitor cells. These data indicate that AIB1 has a central role in the initiation and maintenance of DCIS and that reduction of AIB1 causes loss of BCIC, loss of components of the NOTCH, HER2 and HER3 signaling pathways and fewer DCIS myoepithelial progenitor cells in vivo. We propose that increased expression of AIB1, through the maintenance of BCIC, facilitates formation of DCIS, a necessary step before development of invasive disease.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Células-Tronco Neoplásicas/fisiologia , Coativador 3 de Receptor Nuclear/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Coativador 3 de Receptor Nuclear/antagonistas & inibidores , Coativador 3 de Receptor Nuclear/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA