Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 22(6): 941-952, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639057

RESUMO

In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out using pheophytin a in reactions with various divalent metal ions combined with non- or weakly-coordinative counter ions in a series of organic solvents. To obtain detailed insights into the solvent effect, the metalations with the whole set of cations were investigated in three solvents and with Zn2+ in seven solvents. The reactions were monitored using electronic absorption spectroscopy and the stopped-flow technique. DFT calculations were employed to shed light on the role of solvent in activating the metal ions towards porphyrinoids. This experimental and computational analysis gives detailed information regarding how the solvent and the counter ion assist/hinder the metalation reaction as activators/inhibitors. The metalation course is dictated to a large extent by the reaction medium, via either the activation or deactivation of the incoming metal ion. The solvent may affect the metalation in several ways, mainly via H-bonding with pyrrolenine nitrogens and the activation/deactivation of the incoming cation. It also seems to affect the activation enthalpy by causing slight conformational changes in the macrocyclic ligand. These new mechanistic insights contribute to a better understanding of the "metal-counterion-solvent" interplay in the metalation of porphyrinoids. In addition, they are highly relevant to the mechanisms of metalation reactions catalyzed by chelatases and explain the differences between the insertion of Mg2+ and other divalent cations.


Assuntos
Cátions Bivalentes/química , Feofitinas/química , Catálise , Cinética , Teoria Quântica , Termodinâmica
2.
Chem Commun (Camb) ; 52(30): 5297-300, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27000742

RESUMO

Mn(III)(TPPS) was found to react rapidly with hydrogen peroxide in basic aqueous solution to form intermediate (TPPS)Mn(V)[double bond, length as m-dash]O and (TPPS)Mn(IV)[double bond, length as m-dash]O species which, in the presence of excess H2O2, are reduced fully back to Mn(III)(TPPS) with clear evidence for redox cycling of Mn(III)(TPPS). The system shows very strong catalase and degradation activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA