Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Periodontal Res ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736036

RESUMO

Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.

2.
J Oral Biol Craniofac Res ; 14(2): 222-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495954

RESUMO

Objectives: Alpha-lactalbumin, the protein from human and bovine milk has been found to be promising as an alternative of anticancer agent. This study was aimed to investigate the effects of lactalbumin enzymatic hydrolysate (LAH) on cell proliferation, migration, and mRNA expression of matrix metalloproteinase (MMP) on human squamous cell carcinoma (hSCC) cell lines, in vitro. Methods: Tongue (HSC-4 and 7) and pharyngeal (HN-30 and 31) hSCC cell lines were treated with a two-fold dilution of LAH (0.39-100 mg/ml). Cell viability and cell proliferation were examined by MTT assay. Colony forming unit (CFU) was assessed by crystal violet blue staining. Cell migration was investigated by scratch wound healing assay. Gene expression of metastasis-associated MMPs was assessed by RT-qPCR. Statistical analyses were evaluated at p value = 0.05. Results: LAH at concentration of 50 and 100 mg/ml exhibited cytotoxicity on hSCC cells. The proliferation and CFU ability of hSCC cells were significantly attenuated after LAH treatment. The mRNA expression of MMP2, MMP9, and MMP14 was reduced in HN-30 and HN-31 cells while expression of MMP2 and MMP14 was downregulated in HSC-7 cells. Only MMP1 mRNA level was reduced in HSC-4 cells. However, cell migration of all hSCC cell lines did not alter after LAH treatment. Conclusion: LAH treatment exhibits inhibitory effects on hSCC cell growth, proliferation and MMPs gene expression. Thus, LAH should be the promising alternative agent to develop the prospective anti-cancer drug.

3.
Sci Rep ; 14(1): 6777, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514682

RESUMO

Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.


Assuntos
Osteogênese , Via de Sinalização Wnt , Humanos , Osteogênese/genética , Proteômica , Polpa Dentária , Matriz Extracelular/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Proliferação de Células , Células Cultivadas
4.
Int Dent J ; 74(3): 403-417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494389

RESUMO

The decellularised extracellular matrix (dECM) of in vitro cell culture is a naturally derived biomaterial formed by the removal of cellular components. The compositions of molecules in the extracellular matrix (ECM) differ depending on various factors, including the culture conditions. Cell-derived ECM provides a 3-dimensional structure that has a complex influence on cell signalling, which in turn affects cell survival and differentiation. This review describes the effects of dECM derived from mesenchymal stem cells (MSCs) on cell responses, including cell migration, cell proliferation, and cell differentiation in vitro. Published articles were searched in the PubMed databases in 2005 to 2022, with assigned keywords (MSCs and decellularisation and cell culture). The 41 articles were reviewed, with the following criteria. (1) ECM was produced exclusively from MSCs; (2) decellularisation processes were performed; and (3) the dECM production was discussed in terms of culture systems and specific supplementations that are suitable for creating the dECM biomaterials. The dECM derived from MSCs supports cell adhesion, enhances cell proliferation, and promotes cell differentiation. Importantly, dECM derived from dental MSCs shows promise in regenerative dentistry applications. Therefore, the literature strongly supports cell-based dECMs as a promising option for innovative tissue engineering approaches for regenerative medicine.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Engenharia Tecidual , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Medicina Regenerativa , Matriz Extracelular Descelularizada , Matriz Extracelular , Movimento Celular , Adesão Celular , Materiais Biocompatíveis , Técnicas de Cultura de Células
5.
Int Dent J ; 74(2): 352-358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220513

RESUMO

AIM: Simvastatin has emerged as having a promising role in controlling stem cell behaviours. This study aimed to evaluate the effects of simvastatin on the viability, growth, and migration of stem cells isolated from apical papillae (SCAPs) in vitro. METHODS: SCAPs were isolated and characterised. The viability and proliferation were assessed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, respectively. Cell migration was evaluated using scratch assays. Cell cycle progression and apoptosis were examined using flow cytometry analysis. RESULTS: Simvastatin at a concentration of 100 to 1000 nM did not exhibit cytotoxicity. Simvastatin reduced cell numbers at days 3 and 7. In addition, simvastatin markedly decreased colony formation in both colony number and cell density in a dose-dependent manner. An increase in apoptosis was observed at day 7. There was statistically significant increased in sub G0 population. An in vitro cell migration was attenuated in a dose-dependent manner. CONCLUSION: Simvastatin affects SCAPs' viability, proliferation, and cell migration. The reduction of cell viability at day 7 could be due to apoptotic induction.


Assuntos
Sinvastatina , Células-Tronco , Humanos , Sinvastatina/farmacologia , Citometria de Fluxo , Apoptose
6.
BMC Oral Health ; 24(1): 148, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297241

RESUMO

BACKGROUND: This study aimed to investigate the effects of various toll-like receptor (TLR) and C-type lectin receptor (CLR) ligands on osteogenic differentiation in human dental pulp stem cells (hDPSCs). METHODS: hDPSCs were cultured and treated with various concentrations (0.01, 0.1, 1.0, and 10 µg/mL) of TLR or CLR agonists (PG-LPS, E.coli LPS, poly(I:C), Pam3CSK4, Furfurman, and Zymosan). Cell viability was determined by MTT assay. The effects of TLR and CLR agonists on osteogenic differentiation of hDPSCs were measured by alkaline phosphatase (ALP) activity, Alizarin Red S staining, and Von Kossa staining. In addition, the mRNA expression of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1) was examined by RT-qPCR. A non-parametric analysis was employed for the statistical analyses. The statistically significant difference was considered when p < 0.05. RESULTS: Treatment with TLR and CLR agonists was associated with an increase in hDPSCs' colony-forming unit ability. Compared with the control group, TLR and CLR agonists significantly inhibited the osteogenic differentiation of hDPSCs by decreasing the ALP activity, mineralised nodule formation, and mRNA expression levels of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1). The inhibition of TRIF but not Akt signalling rescued the effects of TLR and CLR agonist attenuating hDPSCs' mineralisation. CONCLUSIONS: The activation of TLRs or CLRs exhibited an inhibitory effect on osteogenic differentiation of hDPSCs via the TRIF-dependent signalling pathway.


Assuntos
Polpa Dentária , Osteogênese , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Diferenciação Celular , Receptores Toll-Like/metabolismo , Células-Tronco , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/farmacologia , RNA Mensageiro/metabolismo , Células Cultivadas
7.
Oral Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243590

RESUMO

OBJECTIVES: This study investigated the miRNA expression profile in Notch-activated human dental stem pulp stem cells (DPSCs) and validated the functions of miRNAs in modulating the odonto/osteogenic properties of DPSCs. METHODS: DPSCs were treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed, and miRNA expression was validated. Odonto/osteogenic differentiation was examined using alkaline phosphatase staining, Alizarin Red S staining, as well as odonto/osteogenic-related gene and protein expression. RESULTS: Fourteen miRNAs were differentially expressed in Jagged1-treated DPSCs. Pathway analysis revealed that altered miRNAs were associated with TGF-ß, Hippo, ErbB signalling pathways, FoxO and Ras signalling. Target prediction analysis demonstrated that 7604 genes were predicted to be targets for these altered miRNAs. Enrichment analysis revealed relationships to various DNA bindings. Among differentially expressed miRNA, miR-296-3p and miR-450b-5p were upregulated under Jagged1-treated conditions. Overexpression of miR-296-3p and miR-450b-5p enhanced mineralization and upregulation of odonto/osteogenic-related genes, whereas inhibition of these miRNAs revealed opposing results. The miR-296-3p and miR-450b-5p inhibitors attenuated the effects of Jagged1-induced mineralization in DPSCs. CONCLUSIONS: Jagged-1 promotes mineralization in DPSCs that are partially regulated by miRNA. The novel understanding of these miRNAs could lead to innovative controlled mechanisms that can be applied to modulate biology-targeted dental materials.

8.
Int Endod J ; 57(2): 219-236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971040

RESUMO

AIM: To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY: hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 µM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS: RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION: IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.


Assuntos
Polpa Dentária , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Proliferação de Células , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Diferenciação Celular , Células Cultivadas
9.
J Periodontol ; 95(3): 281-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932872

RESUMO

BACKGROUND: Various stimuli, that is, mechanical stresses or inflammation, induce the release of adenosine triphosphate (ATP) by human periodontal ligament cells (HPDLCs). Extracellular adenosine triphosphate (eATP) affects HPDLCs' functions such as immunosuppressive action and inflammatory responses. Lipopolysaccharide (LPS) is the key factor involved in periodontal inflammation. However, the possible correlation and detailed mechanism of inflammation-mediated eATP by LPS and inflammatory cascade formation in HPDLCs is unclarified. This study aims to examine the role of eATP on the HPDLCs' responses concerning inflammatory actions after LPS treatment. METHODS: HPDLCs were stimulated with Porphyromonas gingivalis LPS and polyinosinic:polycytidylic acid (poly I:C). The amount of ATP release was measured at different time points using a bioluminescence assay. HPDLCs were treated with eATP. The expression of pro-inflammatory and anti-inflammatory genes was determined. Specific P2X purinoreceptor 7 (P2X7) inhibitors (brilliant blue G [BBG] and KN62), a specific P2Y purinoreceptor 1 (P2Y1) inhibitors (MRS2179), calcium chelator (EGTA), protein kinase C (PKC) inhibitors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF𝜅B) activation inhibitors, and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) inhibitors (H89 dihydrochloride) and activators (forskolin) were used to dissect the mechanism of eATP-induced HPDLCs' inflammatory responses. RESULTS: LPS and poly I:C induced ATP release. A low concentration of eATP (50 µM) increased pro-inflammatory genes (COX2, IL1B, IL6, IL8, IL12, and TNFA), while a high concentration (500 µM) enhanced anti-inflammatory genes (IL4 and IL10). BBG, KN62, and NF𝜅B activation inhibitors impeded eATP-induced pro-inflammatory genes. MRS2179 and H89 markedly suppressed eATP-induced anti-inflammatory genes. Forskolin induced IL4 and IL10. CONCLUSION: HPDLCs respond to LPS by releasing ATP. eATP has dose-dependent dual functions on HPDLCs' inflammatory responses via different pathways. As regulation of inflammation is important in regeneration, eATP may help to limit inflammation and trigger periodontal regeneration.


Assuntos
Trifosfato de Adenosina , Isoquinolinas , Ligamento Periodontal , Sulfonamidas , Humanos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Colforsina/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Inflamação , Anti-Inflamatórios/farmacologia , Células Cultivadas , Poli I/metabolismo
10.
Int Dent J ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065782

RESUMO

Peri-implantitis, a prevalent complication in dental implant therapy, poses a significant threat to long-term implant success. The identification of reliable biomarkers for the early detection and monitoring of peri-implantitis is crucial for timely intervention and improved treatment outcomes. Salivary and peri-implant sulcular fluid (PISF) biomarkers have become promising diagnostic tools in the field of implant dentistry. This scoping review aims to explore current studies in the literature on salivary and PISF biomarkers for peri-implantitis. A systematic search was conducted on 2 databases (PubMed and Scopus) to identify relevant studies published up to January 2023. A total of 86 articles were included, which underwent data extraction and analysis. Several biomarkers have been investigated in salivary and PISF samples for association with peri-implantitis. Investigations included a wide range of biomarkers, including inflammatory markers, matrix metalloproteinases and bone loss markers. The findings suggested that certain salivary and PISF biomarkers demonstrated potential in distinguishing healthy peri-implant conditions from peri-implantitis. Elevated levels of proinflammatory cytokines, such as interleukin-1ß (IL-1ß) and interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and matrix metalloproteinases, have been consistently associated with peri-implantitis. Additionally, alterations in bone loss markers have shown potential as indicators of disease progression and treatment response. In conclusion, this scoping review provides an overview of current knowledge on salivary and PISF biomarkers for peri-implantitis. The identified biomarkers are promising as noninvasive diagnostic tools for early detection, monitoring, and personalised management of peri-implantitis. Future studies should focus on establishing standardised protocols and conducting well-designed clinical trials to validate the diagnostic accuracy and clinical relevance of these biomarkers.

11.
BDJ Open ; 9(1): 25, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661198

RESUMO

OBJECTIVE: This study aimed to develop enamel substitute material using a mechanochemical technique. MATERIALS AND METHODS: Hydroxyapatite was synthesized with and without tricalcium phosphate under uniaxial pressing of 10 and 17 MPa (HA10, HA17, BCP10, and BCP17), followed by sintering at 1250 °C for 2 h. Human enamel and dentin blocks were used as control groups. The mechanical properties were determined by compressive strength test and Vickers microhardness. The data were analyzed with one-way ANOVA and LSD post-hoc test (α = 0.05). The phase formation and morphology of the specimens were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). RESULTS: HA17 and HA10 had compressive strength values comparable to enamel and dentin, respectively (p > 0.05). The microhardness of all synthesized groups was significantly higher than that of tooth structures (p < 0.05). From the XRD graphs, only the hydroxyapatite peak was observed in the control and HA groups. SEM images showed homogeneous hydroxyapatite grains in all groups, while the BCP groups contained higher porosities. CONCLUSIONS: Both HA10 and HA17 are suitable for use as the inorganic part of dentin and enamel substitutes.

12.
Sci Rep ; 13(1): 14102, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644086

RESUMO

Asiatic acid (AA) and asiaticoside, pentacyclic triterpenoid compounds derived from Centella asiatica, are known for their biological effects in promoting type I collagen synthesis and inducing osteogenesis of stem cells. However, their applications in regenerative medicine are limited due to their low potency and poor aqueous solubility. This work aimed to evaluate the osteogenic induction activity of AA derivatives in human periodontal ligament stem cells (hPDLSCs) in vitro. Four compounds were synthesised, namely 501, 502, 503, and 506. AA was used as the control. The 502 exhibited low water solubility, while the 506 compound showed the highest. The cytotoxicity analysis demonstrated that 503 caused significant deterioration in cell viability, while other derivatives showed no harmful effect on hPDLSCs. The dimethyl aminopropyl amine derivative of AA, compound 506, demonstrated a relatively high potency in inducing osteogenic differentiation. An elevated mRNA expression of osteogenic-related genes, BMP2, WNT3A, ALP, OSX and IBSP was observed with 506. Additionally, the expression of BMP-2 protein was enhanced with increasing dose of 506, and the effect was pronounced when the Erk signalling molecule was inhibited. The 506 derivative was proposed for the promotion of osteogenic differentiation in hPDLSCs by upregulating BMP2 via the Erk signalling pathway. The 506 molecule showed promise in bone tissue regeneration.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Triterpenos Pentacíclicos/farmacologia , Osso e Ossos
13.
BDJ Open ; 9(1): 28, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422449

RESUMO

OBJECTIVE: Adenosine triphosphate (ATP) is an essential nucleotide that is normally present in both intracellular and extracellular compartments. Extracellular ATP (eATP) has a pivotal role in both physiological and pathological processes of periodontal ligament tissues. Here, this review aimed to explore the various functions of eATP that are involved in the control of behaviours and functions of periodontal ligament cells. METHODS: To identify the included publications for review, the articles were searched in PubMed (MEDLINE) and SCOPUS with the keywords of adenosine triphosphate and periodontal ligament cells. Thirteen publications were used as the main publications for discussion in the present review. RESULTS: eATP has been implicated as a potent stimulator for inflammation initiation in periodontal tissues. It also plays a role in proliferation, differentiation, remodelling, and immunosuppressive functions of periodontal ligament cells. Yet, eATP has diverse functions in regulating periodontal tissue homeostasis and regeneration. CONCLUSION: eATP may provide a new prospect for periodontal tissue healing as well as treatment of periodontal disease especially periodontitis. It may be utilized as a useful therapeutic tool for future periodontal regeneration therapy.

14.
Oral Dis ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466141

RESUMO

OBJECTIVE: Periostin (PN), a major matricellular periodontal ligament (PDL) protein, modulates the remodeling of the PDL and bone, especially under mechanical stress. This study investigated the requirement of PN-integrin signaling in force-induced expression of transforming growth factor-beta 1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) in human PDL stem cells (hPDLSCs). METHODS: Cells were stimulated with intermittent compressive force (ICF) using computerized controlled apparatus. Cell migration was examined using in vitro scratch assay. The mRNA expression was examined using real-time polymerase chain reaction. The protein expression was determined using immunofluorescent staining and western blot analysis. RESULTS: Stimulation with ICF for 24 h increased the expression of PN, TGF-ß1, and α-SMA, along with increased SMAD2/3 phosphorylation. Knockdown of POSTN (PN gene) decreased the protein levels of TGF-ß1 and pSMAD2/3 upon force stimulation. POSTN knockdown of hPDLSCs resulted in delayed cell migration, as determined by a scratch assay. However, migration improved after seeding these knockdown cells on pre-PN-coated surfaces. Further, the knockdown of αVß5 significantly attenuated the force-induced TGF-ß1 expression. CONCLUSION: Our findings indicate the importance of PN-αVß5 interactions in ICF-induced TGF-ß1 signaling and the expression of α-SMA. Findings support the critical role of PN in maintaining the PDL's tissue integrity and homeostasis.

15.
BDJ Open ; 9(1): 31, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463885

RESUMO

OBJECTIVES: The aim of this study was to investigate the effect of mechanical force on possible dynamic changes of the matrix proteins deposition in the PDL upon in vitro mechanical and in vivo occlusal forces in a rat model with hypofunctional conditions. MATERIALS AND METHODS: Intermittent compressive force (ICF) and shear force (SF) were applied to human periodontal ligament stem cells (PDLSCs). Protein expression of collagen I and POSTN was analyzed by western blot technique. To establish an in vivo model, rat maxillary molars were extracted to facilitate hypofunction of the periodontal ligament (PDL) tissue of the opposing mandibular molar. The mandibles were collected after 4-, 8-, and 12-weeks post-extraction and used for micro-CT and immunohistochemical analysis. RESULTS: ICF and SF increased the synthesis of POSTN by human PDLSCs. Histological changes in the hypofunctional teeth revealed a narrowing of the PDL space, along with a decreased amount of collagen I, POSTN, and laminin in perivascular structures compared to the functional contralateral molars. CONCLUSION: Our results revealed that loss of occlusal force disrupts deposition of some major matrix proteins in the PDL, underscoring the relevance of mechanical forces in maintaining periodontal tissue homeostasis by modulating ECM composition.

16.
Clin Oral Investig ; 27(8): 4541-4552, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261496

RESUMO

OBJECTIVES: Minipigs present advantages for studying oral bone regeneration; however, standardized critical size defects (CSD) for alveolar bone have not been validated yet. The objectives of this study are to develop a CSD in the mandibular alveolar bone in Aachen minipigs and to further investigate the specific role of periosteum. MATERIALS AND METHODS: Three female Aachen minipigs aged 17, 24, and 84 months were used. For each minipig, a split-mouth design was performed: an osteotomy (2 cm height × 2.5 cm length) was performed; the periosteum was preserved on the left side and removed on the right side. Macroscopic, cone beam computed tomography (CBCT), microcomputed tomography (µCT), and histological analyses were performed to evaluate the bone defects and bone healing. RESULTS: In both groups, spontaneous healing was insufficient to restore initial bone volume. The macroscopic pictures and the CBCT results showed a larger bone defect without periosteum. µCT results revealed that BMD, BV/TV, and Tb.Th were significantly lower without periosteum. The histological analyses showed (i) an increased osteoid apposition in the crestal area when periosteum was removed and (ii) an ossification process in the mandibular canal area in response to the surgical that seemed to increase when periosteum was removed. CONCLUSIONS: A robust model of CSD model was developed in the alveolar bone of minipigs that mimics human mandibular bone defects. This model allows to further investigate the bone healing process and potential factors impacting healing such as periosteum. CLINICAL RELEVANCE: This model may be relevant for testing different bone reconstruction strategies for preclinical investigations.


Assuntos
Regeneração Óssea , Periósteo , Animais , Feminino , Suínos , Humanos , Periósteo/cirurgia , Porco Miniatura , Projetos Piloto , Microtomografia por Raio-X , Regeneração Óssea/fisiologia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Mandíbula/patologia
17.
Sci Rep ; 13(1): 9055, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270571

RESUMO

Periodontal ligament stem cells (PDLSCs) play a significant role on periodontal tissue and alveolar bone homeostasis. During inflammation, interleukin (IL)-6 serves as one of key cytokine players controlling tissue reaction as well as alveolar bone tissue remodeling. It is believed that periodontal tissue inflammation causes periodontium degradation, especially alveolar bone. However, in this study, we show that an inflammatory mediator, IL-6, may serve another direction on alveolar bone homeostasis during inflammatory condition. We found that, IL-6 at 10 and 20 ng/mL was not cytotoxic and dose-dependently exerted beneficial effects on osteogenic differentiation of human PDLSCs (hPDLSCs), as demonstrated by increased alkaline phosphatase activity, mRNA expression of osteogenic markers, and matrix mineralization. The presence of physiological and inflammatory level of IL-6, the osteogenic differentiation potential by hPDLSCs was enhanced by several possible mechanisms including transforming growth factor (TGF), Wnt, and Notch pathways. After in-depth and thorough exploration, we found that Wnt pathway serves as key regulator controlling osteogenic differentiation by hPDLSCs amid the IL-6 presentation. Surprisingly, apart from other mesenchymal stem cells, distinct Wnt components are employed by hPDLSCs, and both canonical and non-canonical Wnt pathways are triggered by different mechanisms. Further validation by gene silencing, treatment with recombinant Wnt ligands, and ß-catenin stabilization/translocation confirmed that IL-6 governed the canonical Wnt/ß-catenin pathway via either WNT2B or WNT10B and employed WNT5A to activate the non-canonical Wnt pathway. These findings fulfill the homeostasis pathway governing periodontal tissue and alveolar bone regeneration and may serve for further therapeutic regimen design for restoring the tissues.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Interleucina-6/metabolismo , beta Catenina/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia , Inflamação/metabolismo , Fatores Imunológicos/metabolismo , Diferenciação Celular , Células Cultivadas
18.
Heliyon ; 9(3): e14276, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938472

RESUMO

Purpose: There are two commonly cited modulus of elasticity of the human periodontal ligament (EPDL), i.e., 6.89 ✕ 10-5 GPa (E1) and 6.89 ✕ 10-2 GPa (E2), which are exactly 1000-fold different from each other. This study aims to clarify the ambiguity of the two EPDL used for simulations and determine a more accurate EPDL value of human first premolars using experimental and simulation approaches. Methods: Numerical simulations using finite element analysis were performed to analyze PDL deformation under an average Asian occlusal force. To confirm the results, simple and multi-component, true-scale 3D models of a human first premolar were used in the simulations. Finally, a compression test using a universal testing machine on PDL specimens was conducted to identify the compressive EPDL of human first premolars. Results: The simulation results from both models revealed that E1 was inaccurate, because it resulted in excessive PDL deformation under the average occlusal force, which should not occur during mastication. Although the E2 did not lead to excessive PDL deformation, it was obtained by an error in unit conversion with no scientific backing. In contrast, the compression test results indicated that the compressive EPDL was 9.64 ✕ 10-4 GPa (E3). In the simulation, E3 did not cause excessive PDL deformation. Conclusion: The simulation results demonstrated that both commonly cited EPDL values (E1 and E2) were incorrect. Based on the experimental and simulation results, the average compressive EPDL of 9.64 ✕ 10-4 GPa is proposed as a more accurate value for human first premolars. Clinical significance: The proposed more accurate EPDL would contribute to more precise and reliable FEA simulation results and provide a better understanding of the stress distribution and deformation of dental materials, which will be beneficial to precision dentistry, orthodontics and restoration designs.

19.
Aust Endod J ; 49 Suppl 1: 330-338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36723392

RESUMO

Iloprost's anti-inflammatory effects on human dental pulp stem cells (HDPCs) are currently unknown. We hypothesized that iloprost could downregulate the expression of inflammatory-related genes and protein in an inflamed HDPC in vitro model. To induce inflammation, the HDPCs were treated with a cocktail of interleukin-1 beta, interferon-gamma, and tumour necrosis alpha, at a ratio of 1:10:100. Iloprost (10-6  M) was then added or not to the cultures. Interleukin-6 (IL-6) and interleukin-12 (IL-12) mRNA expression were assessed by real-time polymerase chain reaction. IL-6 protein expression was assessed by enzyme-linked immunosorbent assay. The results were analysed using one-way ANOVA or the Kruskal-Wallis test. The cytokine cocktail induced more robust IL-6 expression than LPS treatment. Iloprost slightly, yet significantly, downregulated IL-6 and IL-12 mRNA expression. These findings suggest that iloprost might be used as a beneficial component in vital pulp therapy.


Assuntos
Epoprostenol , Iloprosta , Humanos , Iloprosta/farmacologia , Iloprosta/metabolismo , Epoprostenol/metabolismo , Epoprostenol/farmacologia , Interleucina-6 , Polpa Dentária/metabolismo , Interleucina-12/metabolismo , Interleucina-12/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
20.
J Dent Sci ; 18(1): 50-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643280

RESUMO

Background/purpose: Ethylenediaminetetraacetic acid (EDTA) is used as an irrigant in regenerative endodontic treatment. The present study aimed to investigate the effects of EDTA on stem cells from apical papilla (SCAPs) in vitro. Materials and methods: Human SCAPs were isolated and characterised. The cells were treated with media supplemented with EDTA at concentrations ranging from 1.25% to 17%. Cell proliferation and apoptosis were examined using MTT assay and annexin V/propidium iodide staining. Cell migration was determined by a scratch assay. Gene expression was evaluated using a real-time polymerase chain reaction. Mineral deposition, a hallmark of osteogenesis in vitro, was determined using alizarin red s staining. Results: Overall, SCAPs exhibited mesenchymal stem cell characteristics. EDTA treatment at 2.50% and 1.25% did not significantly exhibit cytotoxicity and alter cell morphology. However, EDTA attenuated cell proliferation and reduced MKI67 mRNA expression in SCAPs. Further, EDTA significantly induced early cell apoptosis at 48 h. Cell migration was delayed with EDTA treatment. After maintaining SCAPs in an osteogenic induction medium, EDTA diminished mineral deposition by SCAPs on day 14. Conclusion: EDTA treatment exhibits adverse effects on SCAPs in vitro. Hence, EDTA exposure to periapical tissues should be avoided to minimise the negative impacts on SCAPs cells in regenerative processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA